[1] Noda, N., Shizuoka, A., and Ashida, F. A. Three-dimensional treatment of transient thermal stressin a transversely isotropic semi-infinite circular cylinder subjected to a symmetric temperature onthe cylindrical surface. Acta Mechanica, 58, 175-191 (1986)
[2] Tsai, Y. M. Thermal stress in a transversely isotropic medium containing a penny-shaped crack.ASME J. Appl. Mech., 50, 24-28 (1993)
[3] Chandrasekharaiah, D. S. and Keshavan, H. R. Thermoelastic plane waves in a transverselyisotropic body. Acta Mehanica, 47, 11-23 (1991)
[4] Youssef, H. M. Generalized thermoelastic infinite medium with cylindrical cavity subjected tomoving heat source. Mechanics Research Communication, 36, 487-496 (2009)
[5] Ponnusamy, P. Wave propagation in a generalized thermoelastic solid cylinder of arbitrary cross-section. International Journal of Solid and Structures, 44, 5336-5348 (2007)
[6] El-Naggar, A. M., Abd-Alla, A. M., and Ahmed, S. M. On the rotation of a non-homogeneouscomposite infinite cylinder of orthotropic material. Applied Mathematics and Computation, 69,147-157 (1995)
[7] Sharma, J. N. and Grover, D. Body wave propagation in rotating thermoelastic media. MechanicsResearch Communications, 36, 715-721 (2009)
[8] Venkatesan, M. and Ponnusamy, P.Wave propagation in a generalized thermoelastic solid cylinderof arbitrary cross-section immersed in a fluid. International Journal of Mechanical Science, 49,741-751 (2007)
[9] Kardomateas, G. A. Transient thermal stress in cylindrically orthotropic compsite tubes. ASMEJ. Appl. Mech., 56, 411-416 (1989)
[10] Green, A. E. and Lindsay, K. A. Thermoelasticty. Journal of Elasticity, 2, 1-7 (1972)
[11] Abd-Alla, A. M. and Abo-Dahah, S. M. Time-harmonic in a generalized magneto-thermo-viscoelastic continum with and without energy dissipation. Applied Mathematical Modelling, 33,2388-2402 (2009)
[12] Auriault, J. L. Body wave propagation in rotating elastic media. Mechanics Research Communications, 31, 21-27 (2004)
[13] Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I, McGraw-Hill, New York(1953)
[14] Hearmon, R. F. S. Elastic constants of anisotropic materials. Reviews of Modern Physics, 18,409-440 (1946)
[15] Dhaliwal, R. S. and Choudhary, K. Theormoelastic problem for cylindrical regions. Arch. Mech.Stos., 20, 47-65 (1968)
[16] Singh, A. and Puri, P. Thermal stress in an infinite cylinder. Arch. Mech. Stos., 77, 77-88 (1963)
[17] Abd-Alla, A. M., Abo-Dahab, S. M., and Hammad, H. A. H. Propagation of Rayleigh wavesin generalized magneto-thermoelastic orthotropic material under initial stress and gravity field.Applied Mathematical Modelling, 35, 2981-3000 (2011)
[18] Kumar, R. and Mukhopadhyay, S. Effects of thermal relaxation time on plane wave propagationunder two-temperature thermoelasticity. International Journal of Engineering Science, 48, 128-139 (2010)
[19] Abd-Alla, A. M. and Mahmoud, S. R. Magneto-thermoelastic problem in rotating non-homogeneous orthotropic hollow cylinder under the hyperbolic heat conduction model. Meccanica,45, 451-461 (2010) |