[1] Muthukumar, M. Mechanism of DNA transport through pores. Annual Review of Biophysics and Biomolecular Structure, 36, 435-450(2007)
[2] Rhee, M. and Burns, M. A. Nanopore sequencing technology:research trends and applications. Trends in Biotechnology, 24, 580-586(2006)
[3] Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X. H., Jovanovich, S. B., Krstic, P. S., Lindsay, S., Ling, X. S. S., Mastrangelo, C. H., Meller, A., Oliver, J. S., Pershin, Y. V., Ramsey, J. M., Riehn, R., Soni, G. V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., and Schloss, J. A. The potential and challenges of nanopore sequencing. Nature Biotechnology, 26, 1146-1153(2008)
[4] Venkatesan, B. M. and Bashir, R. Nanopore sensors for nucleic acid analysis. Nature Nanotechnology, 6, 615-624(2011)
[5] Bayley, H. and Cremer, P. S. Stochastic sensors inspired by biology. nature, 413, 226-230(2001)
[6] Butler, T. Z., Gundlach, J. H., and Trolly, M. A. Ionic current blockades from DNA and RNA molecules in the α-hemolysin nanopore. Biophysical Journal, 93, 3229-3240(2007)
[7] Mathé, J., Aksimentiev, A., Nelson, D. R., Schulten, K., and Meller, A. Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 102, 12377-12382(2005)
[8] Kasianowicz, J. J., Brandin, E., and Branton, D. Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 93, 13770-13773(1996)
[9] Meller, A., Nivon, L., and Branton, D. Voltage-driven DNA translocations through a nanopore. Physical Review Letters, 86, 3435-3438(2001)
[10] Heng, J. B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y. V., Sligar, S., Schulten, K., and Timp, G. Stretching DNA using the electric field in a synthetic nanopore. Nano Letters, 5, 1883-1888(2005)
[11] Heng, J. B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y. V., Sligar, S., Schulten, K., and Timp, G. The electromechanics of DNA in a synthetic nanopore. Biophysical Journal, 90, 1098-1106(2006)
[12] Zhao, Q., Comer, J., Dimitrov, V., Yemenicioglu, S., Aksimentiev, A., and Timp, G. Stretching and unzipping nucleic acid hairpins using a synthetic nanopore. Nucleic Acids Research, 36, 1532-1541(2008)
[13] Fologea, D., Uplinger, J., Thomas, B., McNabb, D. S., and Li, J. Slowing DNA translocation in a solid state nanopore. Nano Letters, 5, 1734-1737(2005)
[14] Chen, P., Gu, J. J., Brandin, E., Kim Y. R., Wang, D., and Branton, D. Probing single DNA molecule transport using fabricated nanopores. Nano Letters, 4, 2293-2298(2004)
[15] Gershow, M. and Golovchenko, J. A. Recapturing and trapping single molecules with a solid-state nanopore. Nature Nanotechnology, 2, 775-779(2007)
[16] Wanunu, M., Sutin, J., McNally, B., Chow, A., and Meller, A. DNA translocation governed by interactions with solid-state nanopores. Biophysical Journal, 95, 4716-4725(2008)
[17] Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J. F., and Dekker, C. Fast DNA translocation through a solid-state nanopore. Nano Letters, 5, 1193-1197(2005)
[18] Smeets, R. M. M., Keyser, U. F., Krapf, D., Wu, M. Y., Dekker, N. H., and Dekker, C. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Letters, 6, 89-95(2006)
[19] Cao, Q., Zuo, C., Li, L., Li, Y., and Yang, Y. Translocation of nanoparticles through a polymer brush-modified nanochannel. Biomicrofluidics, 6, 034101(2012)
[20] Gupta, C., Liao, W. C.,Gallego-Perez, D., Castro, C. E., and Lee, L. J. DNA translocation through short nanofluidic channels under asymmetric pulsed electric field. Biomicrofluidics, 8, 024114(2014)
[21] Geim, A. K. Graphene:status and prospects. Science, 324, 1530-1534(2009)
[22] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004)
[23] Schneider, G. F., Kowalczyk, S. W., Calado, V. E., Pandraud, G., Zandbergen, H. W., Vandersypen, L. M. K., and Dekker, C. DNA translocation through graphene nanopores. Nano Letters, 10, 3163-3167(2010)
[24] Merchant, C. A., Healy, K., Wanunu, M., Ray, V., Peterman, N., Bartel, J., Fischbein, M. D., Venta, K., Luo, Z., Johnson, A. T. C., and Drndic, M. DNA translocation through graphene nanopores. Nano Letters 10, 2915-2921(2010)
[25] Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., and Golovchenko, J. A. Graphene as a subnanometre trans-electrode membrane. nature, 467, 190-193(2010)
[26] Schlijper, A. G., Hoogerbrugge, P. J., and Manke, C. W. Computer Simulation of dilute polymer solution with the dissipative particle dynamics method. Journal of Rheology, 39, 567(1995)
[27] Spenley, N. A. Scaling laws for polymers in dissipative particle dynamics. Europhysics Letters, 49, 534-540(2000)
[28] Kong, Y., Manke, C. W., Maddenand, W. G., and Schlijper, A. G. Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics. The Journal of Chemical Physics, 107, 592-602(1997)
[29] Wijmans, C. M. and Smit, B. Simulating tethered polymer layers in shear flow with the dissipative particle dynamics technique. Macromolecules, 35, 7138-7148(2002)
[30] Chen, S., Phan-Thien, N., Fan, X. J., and Khoo, B. C. Dissipative particle dynamics simulation of polymer drops in a periodic shear flow. Journal of Non-Newtonian Fluid Mechanics, 118, 65-81(2004)
[31] Smiatek, J. and Schmid, F. Polyelectrolyte electrophoresis in nanochannels:a dissipative particle dynamics simulation. Journal of Chemical Physics B, 114, 6266-6272(2010)
[32] Hoogerbrugge, P. J. and Koelman, J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19, 155-160(1992)
[33] Karplus, M. and Petsko, G. A. Molecular dynamics simulations in biology. nautre, 374, 631-639(1990)
[34] Frish, U., Hasslachcher, B., and Pomeau, Y. Lattice-gas automata for the Navier-Stokes equation. Physical Review Letters, 56, 1505(1986)
[35] Symeonidis, V., Karniadakis, G. E., and Caswell, B. Dissipative particle dynamics simulations of polymer chains:scaling laws and shearing response compared to DNA experiments. Physical Review Letters, 95, 76001(2005)
[36] Espanol, P. and Warren, P. Statistical mechanics of dissipative particle dynamics. Europhysics Letters, 30, 191-196(1995)
[37] Ewald, P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik, 369, 253-287(1921)
[38] Gonzalez-Melchor, M., Mayoral, E., Velazquez, M. E., and Alejandre, J. Electrostatic interactions in dissipative particle dynamics using the Ewald sums. Journal of Chemical Physics, 125, 224107(2006)
[39] Darden, T., York, D., and Pedersen, L. Particle mesh Ewald:an Nlog(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089-10092(1993)
[40] Kratky, O. and Porod, G. Diffuse small-angle scattering of X-rays in colloid systems. Journal of Colloid Science, 4, 35-70(1949)
[41] Marko, J. F. and Siggia, E. D. Stretching DNA. Macromolecules, 28, 8759-8770(1995)
[42] Smith, S. B., Cui, Y. J., and Bustamante, C. Overstretching B-DNA:the elastic response of individual double-stranded and single-stranded DNA molecules. Science, 271, 795-799(1996)
[43] Murphy, M. C., Rasnik, I., Cheng, W., Lohman, T. M., Ha, T. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophysical Journal, 86, 2530-2537(2004)
[44] Chi, Q. J., Wang, G. X., and Jiang, J. H. The persistence length and length per base of singlestranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory. Physica A:Statistical Mechanics and its Applications, 392, 1072(2013)
[45] Muthukumar, M. Theory of capture rate in polymer translocation. The Journal of Chemical Physics, 132, 195101(2010)
[46] Mihovilovic, M., Hagerty, N., and Stein, D. Statistics of DNA capture by a solid-state nanopore. Physical Review Letters, 110, 028102(2013)
[47] Cannavacciuolo, L., Winkler, R. G., and Gompper, G. Mesoscale simulations of polymer dynamic in microchannel flows. Europhysics Letters, 83, 34007(2008)
[48] Hu, G. H., Mao, M., and Ghosal, S. Ion transport through a graphene nanopore. Nanotechnology, 23, 395501(2012)
[49] Mao, M., Ghosal, S., and Hu, G. H. Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage. Nanotechnology, 24, 245202(2013) |