[1] Wesche, M., Hüske, M., Yakushenko, A., Bruggemann, D., Mayer, D., Offenhausser, A., and Wolfrum, B. A nanoporous alumina microelectrode array for functional cell-chip coupling. Nanotechnology, 23(49), 495303 (2012)
[2] Arakcheev, V. G. and Morozov, V. B. Vibrational Spectra of Molecular Fluids in Nanopores, IOP Publishing, Bristol (2012)
[3] Yang, X., Lian, X. J., Liu, S. J., Wang, G., Jiang, C. P., Tian, J., Chen, J. W., and Wang, R. L. Enhanced photocatalytic performance: a -Bi2O3 thin film by nanoporous surface. Journal of Physics D: Applied Physics, 46(3), 35103 (2013)
[4] Meynen, V., Cool, P., and Vansant, E. F. Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials, 125(3), 170-223 (2009)
[5] Silvestre-Albero, J., Serrano-Ruiz, J. C., Sepúlveda-Escribano, A., and Rodríguez-Reinoso, F. Zn-modified MCM-41 as support for Pt catalysts. Applied Catalysis A: General, 351(1), 16-23 (2008)
[6] Chen, X., Surani, F. B., Kong, X., Punyamurtula, V. K., and Qiao, Y. Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid. Applied Physics Letters, 89(24), 241918 (2006)
[7] El-Mir, L., Kraiem, S., Bengagi, M., Elaloui, E., Ouederni, A., and Alaya, S. Synthesis and characterization of electrical conducting nanoporous carbon structures. Physica B: Condensed Matter, 395(1), 104-110 (2007)
[8] Kucheyev, S. O., Hayes, J. R., Biener, J., Huser, T., Talley, C. E., and Hamza, A. V. Surfaceenhanced Raman scattering on nanoporous Au. Applied Physics Letters, 89(5), 53102 (2006)
[9] Biener, J., Wittstock, A., Zepeda-Ruiz, L. A., Biener, M. M., Zielasek, V., Kramer, D., Viswanath, R. N., Weissmüller, J., Bäumer, M., and Hamza, A. Z. Surface-chemistry-driven actuation in nanoporous gold. Nature Materials, 8(1), 47-51 (2008)
[10] Biener, J., Hodge, A. M., Hamza, A. V., Hsiung, L. M., and Satcher, J. H., Jr. Nanoporous Au: a high yield strength material. Journal of Applied Physics, 97(2), 24301 (2005)
[11] Biener, J., Hodge, A. M., Hayes, J. R., Volkert C. A., Zepeda-Ruiz, L. A., Hamza, A. V., and Abraham, F. F. Size effects on the mechanical behavior of nanoporous Au. Nano Letters, 6(10), 2379-2382 (2006)
[12] Hodge, A. M., Biener, J., Hayes, J. R., Bythrow, P. M., Volkert, C. A., and Hamza, A. V. Scaling equation for yield strength of nanoporous open-cell foams. Acta Materialia, 55(4), 1343-1349 (2007)
[13] Fan, H. L. and Fang, D. N. Enhancement of mechanical properties of hollow-strut foams: analysis. Materials and Design, 30(5), 1659-1666 (2009)
[14] Weissmüller, J., Duan, H., and Farkas, D. Deformation of solids with nanoscale pores by the action of capillary forces. Acta Materialia, 58(1), 1-13 (2010)
[15] Gurtin, M. E. and Murdoch, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291-323 (1975)
[16] Wang, J. X., Huang, Z. P., Duan, H. L., Yu, S. W., Feng, X. Q., Wang, G. F., Zhang, W. X., and Wang, T. J. Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica, 24(1), 52-82 (2011)
[17] Feng, X. Q., Xia, R., Li, X. D., and Li, B. Surface effects on the elastic modulus of nanoporous materials. Applied Physics Letters, 94(1), 011916 (2009)
[18] Lu, Z. X., Zhang, C. G., Liu, Q., and Yang, Z. X. Surface effects on the mechanical properties of nanoporous materials. Journal of Physics D: Applied Physics, 44(39), 395404 (2011)
[19] Xia, R., Li, X., Qin, Q., Liu, J., and Feng, X. Q. Surface effects on the mechanical properties of nanoporous materials. Nanotechnology, 22(26), 265714 (2011)
[20] Goudarzi, T., Avazmohammadi, R., and Naghdabadi, R. Surface energy effects on the yield strength of nanoporous materials containing nanoscale cylindrical voids. Mechanics of Materials, 42(9), 852-862 (2010)
[21] Moshtaghin, A. F., Naghdabadi, R., and Asghari, M. Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids. Mechanics of Materials, 51, 74-87 (2012)
[22] Chen, X., Zhang, S., Dikin, D. A., Ding, W., and Ruoff, R. S. Mechanics of a carbon nanocoil. Nano Letters, 3(9), 1299-1304 (2003)
[23] Mao, S., Han, X. D., Wu, M. H., Zhang, Z., Hao, F., Liu, D. M., Zhang, Y. F., and Hou, B. F. Effect of cyclic loading on apparent Young's modulus and critical stress in nano-subgrained superelastic NiTi shape memory alloys. Materials Transactions, 47(3), 735-741 (2006)
[24] Gao, P. X., Mai, W., and Wang, Z. L. Superelasticity and nanofracture mechanics of ZnO nanohelices. Nano Letters, 6(11), 2536-2543 (2006)
[25] Liu, J. L., Mei, Y., Xia, R., and Zhu, W. L. Large displacement of a static bending nanowire with surface effects. Physica E: Low-Dimensional Systems and Nanostructures, 44(10), 2050-2055 (2012)
[26] Wang, G. and Yang, F. Postbuckling analysis of nanowires with surface effects. Journal of Applied Physics, 109(6), 63535 (2011)
[27] Wang, J. S., Wang, G. F., Feng, X. Q., and Qin, Q. H. Surface effects on the superelasticity of nanohelices. Journal of Physics: Condensed Matter, 24(26), 265303 (2012)
[28] Dubbeldam, D., Beerdsen, E., Calero, S., and Smit, B. Dynamically corrected transition state theory calculations of self-diffusion in anisotropic nanoporous materials. The Journal of Physical Chemistry B, 110(7), 3164-3172 (2006)
[29] Lu, Z., Huang, J., and Chen, X. Analysis and simulation of high strain compression of anisotropic open-cell elastic foams. Science China Technological Sciences, 53(3), 863-869 (2010)
[30] Lu, Z., Liu, Q., and Chen, X. Analysis and simulation for the tensile behavior of anisotropic open-cell elastic foams. Applied Mathematics and Mechanics (English Edition), 35(11), 1437-1446 (2014) DOI 10.1007/s10483-014-1874-7
[31] Cammarata, R. C. Surface and interface stress effects on interfacial and nanostructured materials. Materials Science and Engineering: A, 237(2), 180-184 (1997)
[32] Gurtin, M. E., Weissmüller, J., and Larche, F. A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78(5), 1093-1109 (1998)
[33] Chen, T., Chiu, M., and Weng, C. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 100(7), 74308 (2006)
[34] He, J. and Lilley, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Letters, 8(7), 1798-1802 (2008)
[35] Wang, G. and Feng, X. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Applied Physics Letters, 90(23), 231904 (2007)
[36] Zhu, H. X., Mills, N. J., and Knott, J. F. Analysis of the high strain compression of open-cell foams. Journal of the Mechanics and Physics of Solids, 45(11), 1875-1904 (1997)
[37] Lu, Z., Zhang, J., and Wang, S. Investigation into elastic properties of anisotropic random foam model (in Chinese). Journal of Beijing University of Aeronautics and Astronautics, 32, 1468-1471 (2006) |