[1] Van Oijen, J. A. and Goey, L. P. H. Modelling of premixed laminar flames using flamelet-generated manifolds. Combustion Science and Technology, 161, 113-137(2000)
[2] Gicquel, O., Darabiha, N., and Thévenin, D. Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proceedings of the Combustion Institute, 28, 1901-1908(2008)
[3] Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., and Darabiha, N. Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combustion and Flame, 140, 147-160(2005)
[4] Trouve, A. and Poinsot, T. J. The evolution equation for the flame surface density in turbulent premixed combustion. Journal of Fluid Mechanics, 278, 1-31(1994)
[5] Hawkes, E. R. and Cant, R. S. A flame surface density approach to large-eddy simulation of premixed turbulent combustion. Proceedings of the Combustion Institute, 126, 1617-1629(2000)
[6] Künne, G. Large Eddy Simulation of Premixed Combustion Using Artificial Flame Thickening Coupled with Tabulated Chemistry, Optimus-Verl., Göttingen (2012)
[7] Emami, S., Mazaheri, K., Shamooni, A., and Mahmoudi, Y. Numerical simulation of flame acceleration and fast deflagrations using artificial thickening flame approach. 25th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Leeds (2015)
[8] Najafi-Yazdi, A., Cuenot, B., and Mongeau, L. Systematic definition of progress variables and intrinsically low-dimensional, flamelet generated manifolds for chemistry tabulation. Combustion and Flame, 159, 1197-1204(2012)
[9] Tay-Wo-Chong, L., Zellhuber, M., Komarek, T., Hong, G. I., and Polifke, W. Combined influence of strain and heat loss on turbulent premixed flame stabilization. Flow Turbulence and Combustion, 97, 263-294(2016)
[10] Kolla, H. and Swaminathan, N. Strained flamelets for turbulent premixed flames, i:formulation and planar flame results. Combustion and Flame, 157, 943-954(2010)
[11] Kolla, H. and Swaminathan, N. Strained flamelets for turbulent premixed flames, ii:laboratory flame results. Combustion and Flame, 157, 1274-1289(2010)
[12] Edward, K., Kolla, H., Hawkes, E. R., and Pitsch, H. Les of a premixed jet flame DNS using a strained flamelet model. Combustion and Flame, 160, 2911-2927(2013)
[13] Moore, B. C. Principle component analysis in linear systems:controllability, observability, and model reduction. IEEE Transactions on Automatic Control, 26, 17-32(1981)
[14] Edward Jackson, J. A User's Guide to Principal Components, John Wiley and Sons, Inc., New York (1991)
[15] Abdi, H. and Williams, L. J. Principal Component Analysis, John Wiley and Sons, Inc., New York (2010)
[16] Sutherland, J. C. and Parente, A. Combustion modeling using principal component analysis. Proceedings of the Combustion Institute, 32, 1563-1570(2009)
[17] Parente, A., Sutherland, J. C., Dally, B. B., Tognotti, L., and Smith, P. J. Investigation of the mild combustion regime via principal component analysis. Proceedings of the Combustion Institute, 33, 3333-3341(2011)
[18] Coussement, A., Gicquel, O., and Parente, A. Kernel density weighted principal component analysis of combustion process. Combustion and Flame, 159, 2844-2855(2012)
[19] Coussement, A., Gicquel, O., and Parente, A. MG-local-PCA method for reduced order combustion modeling. Proceedings of the Combustion Institute, 34, 1117-1123(2013)
[20] Isaac, B., Fru, G., Thévenin, D., Smith, P. J., and Parente, A. Source term parameterization for PCA combustion modelling. 6th European Combustion Meeting, Lund, Sweden (2013)
[21] Echekki, T. and Mirgolbabaei, H. A novel principal component analysis-based acceleration scheme for LES-ODT:an a priori study. Combustion and Flame, 160, 898-908(2013)
[22] Isaac, B. J., Coussement, A., Gicquel, O., Smith, P. J., and Parente, A. Reduced-order PCA models for chemical reacting flows. Combustion and Flame, 161, 2785-2800(2014)
[23] Biglari, A. and Sutherland, J. C. An a-posteriori evaluation of principal component analysis-based models for turbulent combustion simulations. Combustion and Flame, 162, 4025-4035(2015)
[24] Echekki, T. and Mirgolbabaei, H. Principal component transport in turbulent combustion. Combustion and Flame, 162, 1919-1933(2015)
[25] Chen, J., Liu, M. H., and Chen, Y. L. Optimizing progress variable definition in flamelet-based dimension reduction in combustion. Applied Mathematics and Mechanics (English Edition), 36(11), 1481-1498(2015) https://doi.org/10.1007/s10483-015-1997-7
[26] Lutz, A. E., Kee, R. J., Grcar, J. F., and Rupley, F. M. OPPDIF:a Fortran program for computing opposed-flow diffusion flames. Office of Scientific and Technical Information Technical Reports, Sandia National Laboratories, California (1997)
[27] Poinsot, T. and Veynante, D. Theoretical and Numerical Combustion, Edwards, New York (2005) |