[1] GARDNER, C. S., GREENE, J. M., KRUSKAL, M. D., and MIURA, R. M. Korteweg-devries equation and generalizations. VI. methods for exact solution. Communications on Pure and Applied Mathematics, 27(1), 97-133(1974) [2] LÜ, X., WANG, J. P., LIN, F. H., and ZHOU, X. W. Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dynamics, 91, 1249-1259(2018) [3] LUNDMARK, H. and SZMIGIELSKI, J. Multi-peakon solutions of the Degasperis-Procesi equation. Inverse Problems, 19(6), 1241-1245(2003) [4] BENJAMIN, T. B., BONA, J. L., and MAHONY, J. J. Model equations for long waves in nonlinear dispersive systems. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 272(1220), 47-78(1972) [5] DATE, E., JIMBO, M., KASHIWARA, M., and MIWA, T. Quasi-periodic solutions of the orthogonal KP equation-transformation groups for soliton equations V. Publications of the Research Institute for Mathematical Sciences, 18(3), 1111-1119(1982) [6] ZHANG, P. New exact solutions to breaking soliton equations and Whitham-Broer-Kaup equations. Applied Mathematics and Computation, 217(4), 1688-1696(2010) [7] YAN, Z. Y. and ZHANG, H. Q. New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water. Physics Letters A, 285(5-6), 355-362(2001) [8] HUANG, D. J. and ZHANG, H. Q. Variable-coefficient projective Riccati equation method and its application to a new (2+1)-dimensional simplified generalized Broer-Kaup system. Chaos, Solitons & Fractals, 23(2), 601-607(2005) [9] DAI, C. Q. and ZHANG, J. F. New types of interactions based on variable separation solutions via the general projective Riccati equation method. Reviews in Mathematical Physics, 19(2), 195-226(2007) [10] WANG, B. H., LU, P. H., DAI, C. Q., and CHEN, Y. X. Vector optical soliton and periodic solutions of a coupled fractional nonlinear Schrödinger equation. Results in Physics, 17, 103036(2019) [11] GUO, L. H. and ZHOU, R. Travelling wave solutions of a class of space-time fractional Whitham-Broer-Kaup equations. Journal of Jilin University (Science Edition), 55(1), 7-12(2017) [12] FAN, E. G. and ZHANG, H. Q. Backlund transformation and exact solutions for Whitham-Broer-Kaup equations in shallow water. Applied Mathematics and Mechanics (English Edition), 19(8), 713-716(1998) https://doi.org/10.1007/BF02457745 [13] HAQ, S. and ISHAQ, M. Solution of coupled Whitham-Broer-Kaup equations using optimal homotopy asymptotic method. Ocean Engineering, 84, 81-88(2014) [14] XIE, F. D., YAN, Z. Y., and ZHANG, H. Q. Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow water equations. Physics Letters A, 285(1-2), 76-80(2001) [15] WANG, M. L. Solitary wave solutions for variant Boussinesq equations. Physics Letters A, 199(3-4), 169-172(1995) [16] DAI, C. Q., FAN, Y., and WANG, Y. Y. Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials. Nonlinear Dynamics, 98, 489-499(2019) [17] DAI, C. Q. and ZHANG, J. F. Controlling effect of vector and scalar crossed double-Ma breathers in a partially nonlocal nonlinear medium with a linear potential. Nonlinear Dynamics, 100, 1621-1628(2020) [18] WU, G. Z. and DAI, C. Q. Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrödinger equation. Applied Mathematics Letters, 106, 106365(2020) [19] WANG, B. H. and WANG, Y. Y. Fractional white noise functional soliton solutions of a wick-type stochastic fractional NLSE. Applied Mathematics Letters, 110, 106583(2020) [20] LI, J. B. and ZHANG, L. J. Bifurcations of traveling wave solutions in generalized Pochhammer-Chree equation. Chaos, Solitons & Fractals, 14(4), 581-593(2002) [21] LERMAN, L. M. Complex dynamics and bifurcations in a Hamiltonian system having a transversal homoclinic orbit to a saddle focus. Chaos, 1(2), 174-180(1991) [22] KUPERSHMIDT, B. A. Mathematics of dispersive water waves. Communications in Mathematical Physics, 99(1), 51-73, (1985) [23] ABLOWITZ, M. J. and CLARKSON, P. A. Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge (1991) |