[1] HICKERNELL, F. S. The piezoelectric semiconductor and acoustoelectronic device development in the sixties. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(5), 737-745(2005) [2] QIN, Y., WANG, X. D., and WANG, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. nature, 451(7180), 809-813(2008) [3] LIU, Y., YANG, Q., ZHANG, Y., YANG, Y. Z., and WANG, Z. L. Nanowire piezo-phototronic photodetector:theory and experimental design. Advance Materials, 24(11), 1410-1417(2012) [4] WANG, Z. L. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS Nano, 6(5), 3760-3766(2012) [5] WANG, Z. L. Piezopotential gated nanowire devices:piezotronics and piezo-phototronics. Nano Today, 5(6), 540-552(2010) [6] HUTSON, A. R. and WHITE, D. L. Elastic wave propagation in piezoelectric semiconductors. Journal of Applied Physics, 33(1), 40-47(1962) [7] GAVINI, A. and CARDONA, M. Modulated piezoreflectance in semiconductor. Physical Review B, 1(2), 672-682(1970) [8] CHATTOPADHYAY, D. Piezoelectric and deformation potential acoustic scattering mobility of a two-dimensional electron gas in quantum wells. Physica Status Solidi (B), 135(1), 409-413(2010) [9] ZHANG, X. B., TALIERCIO, T., KOLLIAKOS, S., and LEFEBVRE, P. Influence of electronphonon interaction on the optical properties of Ⅲ nitride semiconductors. Journal of Physics:Condensed Matter, 13(32), 7053-7074(2001) [10] SAKAI, K., FUKUYAMA, A., TOYODA, T., and IKARI, T. Piezoelectric photothermal spectra of Co doped ZnO semiconductor. Japanese Journal of Applied Physics, 41(5), 3371-3373(2002) [11] HE, J. H., HSIN, C. L., LIU, J., CHEN, L. J., and WANG, Z. L. Piezoelectric gated diode of a single ZnO nanowire. Advanced Materials, 19(6), 781-784(2007) [12] ZHOU, J., GU, Y. D., HU, Y. F., MAI, W. J., YEH, P. H., BAO, G., SOOD, A. K., POLLA, D. L., and WANG, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters, 94(19), 191103(2009) [13] KO, S. H., LEE, D., KANG, H. W., NAM, K. H., YEO, J. Y., HONG, S. J., GRIGOROPOULOS, C. P., and SUNG, H. J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Letters, 11(2), 666-671(2011) [14] YANG, J. S. An anti-plane crack in a piezoelectric semiconductor. International Journal of Fracture, 136(1-4), L27-L32(2005) [15] HU, Y. T., ZENG, Y., and YANG, J. S. A mode Ⅲ crack in a piezoelectric semiconductor of crystals with 6 mm symmetry. International Journal of Solids and Structures, 44, 3928-3938(2007) [16] SLADEK, J., SLADEK, V., PAN, E., and WUNSCHE, M. Fracture analysis in piezoelectric semiconductor under a thermal load. Engineering Fracture Mechanics, 126, 27-39(2014) [17] ZHAO, M. H., PAN, Y. B., FAN, C. Y., and XU, G. T. Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors. International Journal of Solids and Structures, 94-95, 50-59(2016) [18] FAN, C. Y., YAN, Y., XU, G. T., and ZHAO, M. H. Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method. Engineering Fracture Mechanics, 165, 183-196(2016) [19] ZHANG, Q. Y., FAN, C. Y., XU, G. T., and ZHAO, M. H. Iterative boundary element method for crack analysis of two-dimensional piezoelectric semiconductor. Engineering Analysis with Boundary Elements, 83, 87-95(2017) [20] ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Materials and Structures, 26(2), 025030(2017) [21] LUO, Y. X., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. An analysis of PN junctions in piezoelectric semiconductors. Journal of Applied Physics, 122(20), 204502(2017) [22] YANG, W. L., HU, Y. T., and YANG, J. S. Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force. Materials Research Express, 6(2), 025902(2019) [23] LUO, Y. X., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 54, 341-348(2018) [24] WANG, G. L., LIU, J. X., and LIU, X. L. Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. Journal of Applied Physics, 124(9), 095402(2018) [25] DAI, X. Y., ZHU, F., QIAN, Z. H., and YANG, J. S. Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy, 43, 22-28(2018) [26] JIN, Z. H. and YANG, J. S. Analysis of a sandwiched piezoelectric semiconducting thermoelectric structure. Mechanics Research Communications, 98, 31-36(2019) [27] CHENG, R. R., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Temperature effects on PN junctions in piezoelectric semiconductor fibers with thermoelastic and pyroelectric couplings. Journal of Electronic Materials, 49(5), 3140-3148(2020) [28] ZHAO, M. H., YANG, C. H., FAN, C. Y., and ZHANG, Q. Y. A shooting method for nonlinear boundary value problems in a thermal piezoelectric semiconductor plate. Zeitschrift für Angewandte Mathematik und Mechanik, 100(12), e201900302(2020) [29] TIAN, R., LIU, J. X., PAN, E., and WANG, Y. S. SH waves in multilayered piezoelectric semiconductor plates with imperfect interfaces. European Journal of Mechanics-A/Solids, 81, 103961(2020) [30] ZHAO, M. H., ZHANG, Q. Y., and FAN, C. Y. An efficient iteration approach for nonlinear boundary value problems in 2D piezoelectric semiconductor. Applied Mathematical Modelling, 74, 170-183(2019) [31] YANG, G. Y., DU, J. K., WANG, J., and YANG, J. S. Extension of piezoelectric semiconductor fiber with consideration of electrical nonlinearity. Acta Mechanica, 229(11), 4663-4676(2018) [32] GUO, M. K., LI, Y., QIN, G. S., and ZHAO, M. H. Nonlinear solutions of PN junctions of piezoelectric semiconductors. Acta Mechanica, 230, 1825-1841(2019) [33] LIAO, S. J. Beyond Perturbation:Introduction to the Homotopy Analysis Method, CRC Press, Boca Raton (2004) [34] DMMAIRRY, G. and FAZELI, M. Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Communications in Nonlinear Science and Numerical Simulation, 14(2), 489-499(2009) [35] GAO, L. M., WANG, J., ZHONG, Z., and DU, J. K. An analysis of surface acoustic wave propagation in functionally graded plates with homotopy analysis method. Acta Mechanica, 208, 249-258(2009) [36] WU, R. X., WANG, J., DU, J. K., HUANG, D. J., YAN, W., and HU, Y. T. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(1), 30-39(2012) [37] WU, R. X., WANG, J., DU, J. K., HU, Y. T., and HU, H. P. Solutions of nonlinear thickness-shear vibrations of an infinite isotropic plate with the homotopy analysis method. Numerical Algorithms, 59, 213-226(2012) [38] LIN, X., HUANG, Y., ZHAO, Y., and WANG, T. S. Large deformation analysis of a cantilever beam made of axially functionally graded material by homotopy analysis method. Applied Mathematics and Mechanics (English Edition), 40(10), 1375-1386(2019) https://doi.org/10.1007/s10483-019-2515-9 |