[1] VAN BEEK, J. T. M. and PUERS, R. A review of MEMS oscillators for frequency reference and timing applications. Journal of Micromechanics and Microengineering, 22(1), 013001(2012) [2] SABOONCHI, H., OZEVIN, D., and KABIR, M. MEMS sensor fusion:acoustic emission and strain. Sensors and Actuators A:Physical, 247, 566-578(2016) [3] TREVISO, A., VAN GENECHTEN, B., MUNDO, D., and TOURNOUR, M. Damping in composite materials:properties and models. Composites Part B:Engineering, 78, 144-152(2015) [4] YI, Y. B., RAHAFROOZ, A., and POURKAMALI, S. Modeling and testing of the collective effects of thermoelastic and fluid damping on silicon mems resonators. Journal of Micro/Nanolithography, MEMS, and MOEMS, 8(2), 023010(2009) [5] LAKES, R. S. Viscoelastic Solids, CRC Press, New York (1998) [6] YANG, J., ONO, T., and ESASHI, M. Energy dissipation in submicrometer thick single-crystal silicon cantilevers. Journal of Microelectromechanical Systems, 11(6), 775-783(2002) [7] ZENER, C. Internal friction in solids, I:theory of internal friction in reeds. Physical Review, 52(3), 230-235(1937) [8] LIFSHITZ, R. and ROUKES, M. L. Thermoelastic damping in micro-and nanomechanical systems. Physical Review B, 61(8), 5600(2000) [9] SERRA, E. and BONALDI, M. A finite element formulation for thermoelastic damping analysis. International Journal for Numerical Methods in Engineering, 78(6), 671-691(2009) [10] RALEVA, K., VASILESKA, D., GOODNICK, S. M., and NEDJALKOV, M. Modeling thermal effects in nanodevices. IEEE Transactions on Electron Devices, 55(6), 1306-1316(2008) [11] MAILLET, D. A review of the models using the cattaneo and vernotte hyperbolic heat equation and their experimental validation. International Journal of Thermal Sciences, 139, 424-432(2019) [12] VERNOTTE, P. The true heat equation. Comptes Rendus, 247, 2103(1958) [13] CHESTER, M. Second sound in solids. Physical Review, 131(5), 2013(1963) [14] JOSEPH, D. D. and PREZIOSI, L. Heat waves. Reviews of Modern Physics, 61(1), 41-73(1989) [15] ZHOU, H. and LI, P. Thermoelastic damping in micro-and nanobeam resonators with non-Fourier heat conduction. IEEE Sensors Journal, 17(21), 6966-6977(2017) [16] WANG, L. and XU, M. Well-posedness of dual-phase-lagging heat conduction equation:higher dimensions. International Journal of Heat and Mass Transfer, 45(5), 1165-1171(2002) [17] GUO, F., WANG, G., and ROGERSON, G. Analysis of thermoelastic damping in micro-and nanomechanical resonators based on dual-phase-lagging generalized thermoelasticity theory. International Journal of Engineering Science, 60, 59-65(2012) [18] RUKOLAINE, S. A. Unphysical effects of the dual-phase-lag model of heat conduction. International Journal of Heat and Mass Transfer, 78, 58-63(2014) [19] TZOU, D. Y. Macro-to Microscale Heat Transfer:the Lagging Behavior, John Wiley and Sons, West Sussex (2014) [20] ZEGARD, T. and PAULINO, G. H. Bridging topology optimization and additive manufacturing. Structural and Multi-disciplinary Optimization, 53(1), 175-192(2016) [21] FU, Y., LI, L., and HU, Y. Enlarging quality factor in microbeam resonators by topology optimization. Journal of Thermal Stresses, 42(3), 341-360(2019) [22] FU, Y., LI, L., DUAN, K., and HU, Y. A thermodynamic design methodology for achieving ultrahigh frequency-quality product of microresonators. Thin-Walled Structures, 166, 108104(2021) [23] XIA, L., XIA, Q., HUANG, X., and XIE, Y. M. Bi-directional evolutionary structural optimization on advanced structures and materials:a comprehensive review. Archives of Computational Methods in Engineering, 25(2), 437-478(2016) [24] ASHEGHI, M., LEUNG, Y., WONG, S., and GOODSON, K. Phonon-boundary scattering in thin silicon layers. Applied Physics Letters, 71(13), 1798-1800(1997) [25] CHEN, G. Non-Fourier phonon heat conduction at the microscale and nanoscale. Nature Reviews Physics, 3(8), 555-569(2021) [26] XUE, Z., CAO, G., and LIU, J. Size-dependent thermoelasticity of a finite bi-layered nanoscale plate based on nonlocal dual-phase-lag heat conduction and Eringen's nonlocal elasticity. Applied Mathematics and Mechanics (English Edition), 42(1), 1-16(2021) https://doi.org/10.1007/s10483-021-2692-5 [27] CHEN, G. Nanoscale Energy Transport and Conversion:A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, New York (2005) [28] LEE, S. and LI, X. Hydrodynamic phonon transport:past, present, and prospect. Nanoscale Energy Transport:Emerging Phenomena, Methods, and Applications, IOP Publishing Ltd., Bristol, 1-26(2019) [29] GUO, X., YI, Y. B., and POURKAMALI, S. A finite element analysis of thermoelastic damping in vented mems beam resonators. International Journal of Mechanical Sciences, 74, 73-82(2013) [30] LI, L., HU, Y., DENG, W., LÜ, L., and DING, Z. Dynamics of structural systems with various frequency-dependent damping models. Frontiers of Mechanical Engineering, 10(1), 48-63(2015) [31] COOK, R. D. Concepts and Applications of Finite Element Analysis, John Wiley and Sons, West Sussex (2007) [32] LI, L., HU, Y., and WANG, X. A study on design sensitivity analysis for general nonlinear eigenproblems. Mechanical Systems and Signal Processing, 34(1-2), 88-105(2013) [33] BENDSOE, M. P. and SIGMUND, O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 69(9), 635-654(1999) [34] SIGMUND, O. A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21(2), 120-127(2001) |