[1] XU, S. Y., POIRIER, G., and YAO, N. PMN-PT nanowires with a very high piezoelectric constant. Nano Letters, 12(5), 2238–2242(2012) [2] XU, S. Y., YEH, Y. W., POIRIER, G., MCALPINE, M. C., REGISTER, R. A., and YAO, N. Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. Nano Letters, 13(6), 2393–2398(2013) [3] XU, S., QIN, Y., XU, C., WEI, Y. G., YANG, R. S., and WANG, Z. L. Self-powered nanowire devices. Nature Nanotechnology, 5(5), 366–373(2010) [4] WANG, X. D., SONG, J. H., LIU J., and WANG, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science, 316(5821), 102–105(2007) [5] ZHOU, J., GU, Y. D., FEI, P., MAI, W. J., GAO, Y. F., YANG, R. S., BAO, G., and WANG, Z. L. Flexible piezotronic strain sensor. Nano Letters, 8(9), 3035–3040(2008) [6] WU, J. M., CHEN, C. Y., ZHANG, Y., CHEN, K. H., YANG, Y., HU, Y. F., HE, J. H., and WANG, Z. L. Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. ACS Nano, 6(5), 4369–4374(2012) [7] TANNER, S. M., GRAY, J. M., ROGERS, C. T., BERTNESS, K. A., and SANFORD, N. A. High-Q GaN nanowire resonators and oscillators. Applied Physics Letters, 91(20), 203117(2007) [8] TRIVEDI, S. and NEMADE, H. B. Simulation of a Love wave device with ZnO nanorods for high mass sensitivity. Ultrasonics, 84, 150–161(2018) [9] WANG, X. D., ZHOU, J., SONG, J. H., LIU, J., XU, N. S., and WANG, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6(12), 2768–2772(2006) [10] HE, J. H., HSIN, C. L., LIU, J., CHEN, L. J., and WANG, Z. L. Piezoelectric gated diode of a single ZnO nanowire. Advanced Materials, 19(6), 781–784(2007) [11] AGRAWAL, R., PENG, B., GDOUTOS, E. E., and ESPINOSA, H. D. Elasticity size effects in ZnO nanowires-a combined experimental-computational approach. Nano Letters, 8(11), 3668–3674(2008) [12] CHEN, C. Q., SHI, Y., ZHANG, Y. S., ZHU, J., and YAN, Y. J. Size dependence of Young’s modulus in ZnO nanowires. Physical Review Letters, 96(7), 075505(2006) [13] DAI, S. X. and PARK, H. S. Surface effects on the piezoelectricity of ZnO nanowires. Journal of Mechanics and Physics of Solids, 61(2), 385–397(2013) [14] HOANG, M. T., YVONNET, J., MITRUSHCHENKOV, A., and CHAMBAUD, G. Firstprinciples based multiscale model of piezoelectric nanowires with surface effects. Journal of Applied Physics, 113(1), 014309(2013) [15] QIAN, D. H. Electro-mechanical coupling wave propagating in a locally resonant piezoelectric/elastic phononic crystal nanobeam with surface effects. Applied Mathematics and Mechanics (English Edition), 41(3), 425–438(2020) https://doi.org/10.1007/s10483-020-2586-5 [16] FANG, X. Q., LIU, J. X., and GUPTA, V. Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale, 5(5), 1716–1726(2013) [17] YAN, Z. and JIANG, L. Y. Modified continuum mechanics modeling on size-dependent properties of piezoelectric nanomaterials: a review. Nanomaterials, 7(2), 27(2017) [18] HONG, J., HE, Z., ZHANG, G., and MI, C. Size and temperature effects on band gaps in periodic fluid-filled micropipes. Applied Mathematics and Mechanics (English Edition), 42(9), 1219–1232(2021) https://doi.org/10.1007/s10483-021-2769-8 [19] GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291–323(1975) [20] WANG, J. X., HUANG, Z. P., DUAN, H. L., YU, S. W., FENG, X. Q., WANG, G. F., ZHANG, W. X., and WANG, T. J. Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica, 24(1) 52–82(2011) [21] HUANG, G. Y. and YU, S. W. Effect of surface piezoelectricity on the electromechanical behavior of a piezoelectric ring. Physica Status Solidi B: Basic Solid State Physics, 243(4) 22–24(2006) [22] PAN, X. H., YU, S. W., and FENG, X. Q. A continuum theory of surface piezoelectricity for nanodielectrics. SCIENCE CHINA Physics Mechanics & Astronomy, 54(4), 564–573(2011) [23] XIAO, J. H., XU, Y. L., and ZHANG, F. C. Evaluation of effective electroelastic properties of piezoelectric coated nano-inclusion composites with interface effect under antiplane shear. International Journal of Engineering Science, 69, 61–68(2013) [24] FANG, X. Q., YANG, Q., LIU, J. X., and FENG, W. J. Surface/interface effect around a piezoelectric nano-particle in a polymer matrix under compressional waves. Applied Physics Letters, 100(15), 151602(2012) [25] ZHANG, L. L., LIU, J. X., FANG, X. Q., and NIE, G. Q. Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Physica E, 57, 169–174(2014) [26] ZHANG, C. L., CHEN, W. Q., and ZHANG, C. On propagation of anti-plane shear waves in piezoelectric plates with surface effect. Physics Letters A, 376(45), 3281–3286(2012) [27] YAN, Z. and JIANG, L. Y. Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. Journal of Physics D: Applied Physics, 44(7), 075404(2011) [28] YAN, Z. and JIANG, L. Y. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 22(24), 245703(2011) [29] ZHANG, J., WANG, C. Y., and ADHIKARI, S. Surface effect on the buckling of piezoelectric nanofilms. Journal of Physics D: Applied Physics, 45(28), 285301(2012) [30] ZHANG, J. and WANG, C. Y. Vibrating piezoelectric nanofilms as sandwich nanoplates. Journal of Applied Physics, 111(9), 094303(2012) [31] LI, Y. H., FANG, B., ZHANG, J. H., and SONG, J. Z. Surface effects on the wrinkling of piezoelectric films on compliant substrates. Journal of Applied Physics, 110(11), 114303(2011) [32] GUO, X. and WEI, P. J. Dispersion relations of in-plane elastic waves in nano-scale one dimensional piezoelectric semiconductor/piezoelectric dielectric phononic crystal with the consideration of interface effect. Applied Mathematical Modelling, 96, 189–214(2021) [33] HUANG, Y., DAS, P. K., and BHETHANABOTLA, V. R. Surface acoustic waves in biosensing applications. Sensors and Actuators Reports, 3, 100041(2021) [34] YANG, W. J., LIANG, X., and SHEN, S. P. Love waves in layered flexoelectric structures. Philosophical Magazine, 97(33), 3186–3209(2017) [35] WANG, X., LI, P., and JIN, F. A generalized dynamic model of nanoscale surface acoustic wave sensors and its applications in Love wave propagation and shear-horizontal vibration. Applied Mathematical Modelling, 75, 101–115(2019) [36] CHEN, T. Y., CHIU, M. S., and WENG, C. N. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 100(7), 074308(2006) [37] YANG, J. S. Analysis of Piezoelectric Devices, World Scientific Publishing, Hackensack (2006) [38] BENETTI, M., CANNATA, D., DI-PIETRANTONIO, F., and VERONA, E. Growth of ALN piezoelectric film on diamond for high-frequency surface acoustic wave devices. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 52(10), 1806–1811(2005) |