[1] NOVOSELOV, K. S. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004) [2] GIOVANNETTI, G., KHOMYAKOV, P. A., BROCKS, G., KELLY, P. J., and BRINK, J. Substrate-induced band gap in graphene on hexagonal boron nitride:ab initio density functional calculations. Physical Review B, 76, 073103(2007) [3] RADISAVLJEVIC, B., RADENOVIC, A., BRIVIO, J., GIACOMETTI, V., and KIS, A. Singlelayer MoS2 transistors. Nature Nanotechnology, 6, 147-150(2011) [4] BHIMANAPATI, G. R., LIN, Z., MEUNIER, V., JUNG, Y., CHA, J., DAS, S., XIAO, D., SON, Y., STRANO, M. S., COOPER, V. R., LIANG, L., LOUIE, S. G., RINGE, E., ZHOU, W., KIM, S. S., NAIK, R. R., SUMPTER, B. G., TERRONES, H., XIA, F., WANG, Y., ZHU, J., AKINWANDE, D., ALEM, N., SCHULLER, J. A., SCHAAK, R. E., TERRONES, M., and ROBINSON, J. A. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 9, 11509-11539(2015) [5] TANG, X., DU, A., and KOU, L. Gas sensing and capturing based on two-dimensional layered materials:overview from theoretical perspective. WIREs Computational Molecular Science, 8, e1361(2018) [6] WEI, Q. and PENG, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 104, 251915(2014) [7] ZHU, L., ZHANG, G., and LI, B. Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Physical Review B, 90, 214302(2014) [8] JIANG, J. W. and PARK, H. S. Negative Poisson's ratio in single-layer black phosphorus. Nature Communications, 5, 4727(2014) [9] ZHANG, G., HUANG, S., CHAVES, A., SONG, C., OZÇ ELIK, V. O., LOW, T., and YAN, H. Infrared fingerprints of few-layer black phosphorus. Nature Communications, 8, 14071(2017) [10] CHEN, C., CHEN, F., CHEN, X., DENG, B., ENG, B., JUNG, D., GUO, Q., YUAN, S., WATANABE, K., TANIGUCHI, T., LEE, M. L., and XIA, F. Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Letters, 19, 1488-1493(2019) [11] LIU, H., NEAL, A. T., ZHU, Z., LUO, Z., XU, X., TOMANEK, D., and YE, P. D. Phosphorene:an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033-4041(2014) [12] LONG, G., MARYENKO, D., SHEN, J., XU, S., HOU, J., WU, Z., WONG, W. K., HAN, T., LIN, J., CAI, Y., LORTZ, R., and WANG, N. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Letters, 16, 7768-7773(2016) [13] YUAN, H., LIU, X., AFSHINMANESH, F., LI, W., XU, G., SUN, J., LIAN, B., CURTO, A. G., YE, G., HIKITA, Y., SHEN, Z., ZHANG, S. C., CHEN, X., BRONGERSMA, M., HWANG, H. Y., and CUI, Y. Polarization-sensitive broadband photodetector using a black phosphorus bertical p-n junction. Nature Nanotechnology, 10, 707-713(2015) [14] XIA, F., WANG, H., and JIA, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, 4458(2014) [15] LI, L., YU, Y., YE, G. J., GE, Q., OU, X., WU, H., FENG, D., CHEN, X. H., and ZHANG, Y. Black phosphorus field-effect transistors. Nature Nanotechnology, 9, 372-377(2014) [16] GOMES, L. C., CARVALHO, A., and CASTRO-NETO, A. H. Enhanced piezoelectricity and modified dielectric screening of 2-D group-IV monochalcogenides. Physical Review B, 92, 214103(2015) [17] QIN, G., QIN, Z., FANG, W. Z., ZHANG, L. C., YUE, S. Y., YAN, Q. B., HU, M., and SU, G. Diverse anisotropy of phonon transport in two-dimensional IV-VI compounds:a first-principles study. Nanoscale, 8, 11306(2016) [18] XU, L., YANG, M., WANG, S. J., and FENG, Y. P. Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M=Ge, Sn; X=S, Se, Te). Physical Review B, 95, 235434(2017) [19] ZHAO, L. D., LO, S. H., ZHANG, Y., SUN, H., TAN, G., UHER, C., WOLVERTON, C., DRAVID, V. P., and KANATZIDIS, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. nature, 508, 373-377(2014) [20] ZHAO, L. D., TAN, G., HAO, S., HE, J., PEI, Y., CHI, H., WANG, H., GONG, S., XU, H., DRAVID, V. P., UHER, C., SNYDER, G. J., WOLVERTON, C., and KANATZIDIS, M. G. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 351, 141-144(2016) [21] TAN, Q., ZHAO, L. D., LI, J. F., WU, C. F., WEI, T. R., XING, Z. B., and KANATZIDIS, M. G. Thermoelectrics with earth abundant elements:low thermal conductivity and high thermopower in doped SnS. Journal of Materials Chemistry A, 2, 17302-17306(2014) [22] SHI, G. and KIOUPAKIS, E. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe. Journal of Applied Physics, 117, 065103(2015) [23] WANG, M. X., YUE, G. H., LIN, Y. D., WEN, X., PENG, D. L., and GENG, Z. R. Synthesis, optical properties and photovoltaic application of the SnS quasi-one-dimensional nanostructures. Nano-Micro Letters, 5, 1-6(2013) [24] HU, P., WEN, Z., WANG, L., TAN, P., and XIAO, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 6, 5988-5994(2012) [25] LATE, D. J., LIU, B., LUO, J., YAN, A., MATTE, H. S. S. R., GRAYSON, M., RAO, C. N. R., and DRAVID, V. P. GaS and GaSe ultrathin layer transistors. Advanced Materials, 24, 3549-3554(2012) [26] LIAO, L., BAI, J., QU, Y., LIN, Y., LI, Y., HUANG, Y., and DUAN, X. High-·oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proceedings of the National Academy of Sciences of the United States of America, 107, 6711-6715(2010) [27] JARIWALA, D., MARKS, T. J., and HERSAM, M. C. Mixed-dimensional van der Waals heterostructures. Nature Materials, 16, 170-181(2017) [28] CAO, Y., FATEMI, V., FANG, S., WATANABE, K., TANIGUCHI, T., KAXIRAS, E., and JARILLO-HERRERO, P. Unconventional superconductivity in magic-angle graphene superlattices. nature, 556, 43-50(2018) [29] CAO, Y., FATEMI, V., DEMIR, A., FANG, S., TOMARKEN, S. L., LUO, J. Y., SANCHEZYAMAGISHI, J. D., WATANABE, K., TANIGUCHI, T., KAXIRAS, E., ASHOORI, R. C., and JARILLO-HERRERO, P. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. nature, 556, 80-84(2018) [30] CHENG, J., YANG, X., SANG, L., GUO, L., HU, A., XU, F., TANG, N., WANG, X., and SHEN, B. High mobility AlGaN/GaN heterostructures grown on Si substrates using a large latticemismatch induced stress control technology. Applied Physics Letters, 106, 142106(2015) [31] CAO, Y. H., LI, Y. F., HE, J. W., QIAN, C. X., ZHANG, Q., BAI, J. T., and FENG, H. J. Asymmetric strain-introduced interface effect on the electronic and optical properties of the CsPbI3/SnS van der Waals heterostructure. Advanced Materials Interfaces, 6, 1901330(2019) [32] HOU, C., TAI, G., LIU, B., WU, Z., and YIN, Y. Borophene-graphene heterostructure:preparation and ultrasensitive humidity sensing. Nano Research, 14, 2337-2344(2021) [33] LIU, X. L. and HERSAM, M. C. Borophene-graphene heterostructures. Science Advances, 5 eaax6444(2019) [34] MORTAZAVI, B., SILANI, M., PODRYABINKIN, E. V., RABCZUK, T., ZHUANG, X., and SHAPEEV, A. V. First-principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine-learning interatomic potentials. Advanced Materials, 33, 2102807(2021) [35] DOU, W., HUANG, A., JI, Y., YANG, X., XIN, Y., SHI, H., WANG, M., XIAO, Z., ZHOU, M., and CHU, P. K. Strain-enhanced power conversion e-ciency of a BP/SnSe van der Waals heterostructure. Physical Chemistry Chemical Physics, 22, 14787(2020) [36] KONG, X., DENG, J., LI, L., LIU, Y., DING, X., SUN, J., and LIU, J. Z. Tunable auxetic properties in group-IV monochalcogenide monolayers. Physical Review B, 98, 184104(2018) [37] BLOCHL, P. E. Projector augmented-wave method. Physical Review B, 50, 17953(1994) [38] PERDEW, J. P., BURKE, K., and ERNZERHOF, M. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865(1996) [39] KRESSE, G. and FURTHMULLER, J. E-cient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Physical Review B, 54, 11169(1996) [40] KRESSE, G. and FURTHMULLER, J. E-ciency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15-50(1996) [41] GRIMME, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27, 1787-1799(2006) [42] BROWN, A. and RUNDQVIST, S. Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 19, 684-685(1965) [43] HERIBET, B. and GEORG, V. Refinement of the structures of GeS, GeSe, SnS and SnSe. Zeitschrift für Kristallographie:Crystalline Materials, 148, 295-304(1978) [44] SIRIKUMARA, H. I. and JAYASEKERA, T. Tunable indirect-direct transition of few-layer SnSe via interface engineering. Journal of Physics:Condensed Matter, 29, 425501(2017) [45] LIU, F., MING, P., and LI, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 76, 064120(2007) [46] LI, C. W., HONG, J., MAY, A. F., BANSAL, D., CHI, S., HONG, T., EHLERS, G., and DELAIRE, O. Orbitally driven giant phonon anharmonicity in SnSe. Nature Physics, 11, 1063-1069(2015) |