[1] CATTANEO, C. Sulla conduzione del calore. Atti del Seminario Matematico e Fisico dell’ Università di Modena, 3, 83–101(1948) [2] CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36, 481–486(2009) [3] CIARLETTA, M. and STRAUGHAN, B. Uniqueness and structural stability for the Cattaneo-Christov equations. Mechanics Research Communications, 37, 445–447(2010) [4] REDDY, C. S. and ALI, F. Cattaneo-Christov double diffusion theory for MHD cross nanofluid flow towards a vertical stretching sheet with activation energy. International Journal of Ambient Energy, 43(1), 3924–3933(2022) [5] ALI, F. and SUMMAYYA, N. Numerical simulation of Cattaneo-Christov double-diffusion theory with thermal radiation on MHD Eyring-Powell nanofluid towards a stagnation point. International Journal of Ambient Energy, 43(1), 4939–4949(2021) [6] FAIZAN, M., ALI, F., LOGANATHAN, K., ZAIB, A., REDDY, C. S., and ABDELSALAM, S. Entropy analysis of Sutterby nanofluid flow over a Riga sheet with gyrotactic microorganisms and Cattaneo-Christov double diffusion. Mathematics, 10(17), 3157(2022) [7] HAYAT, T., KHAN, M. I., FAROOQ, M., ALSAEDI, A., WAQAS, M., and YASMEEN, T. Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. International Journal of Heat and Mass Transfer, 99, 702–710(2016) [8] SHAFIQ, A., JABEEN, S., HAYAT, T., and ALSAEDI, A. Cattaneo-Christov heat flux model for squeezed flow of third grade fluid. Surface Review Letters, 24, 1750098(2017) [9] MUSTAFA, M. Cattaneo-Christov heat flux model for rotating flow and heat transfer of upperconvected Maxwell fluid. AIP Advances, 5, 047109(2015) [10] SHAH, Z., TASSADDIQ, A., ISLAM, S., ALKLAIBI, A. M., and KHAN, I. Cattaneo-Christov heat flux model for three-dimensional rotating flow of SWCNT and MWCNT nanofluid with Darcy-Forchheimer porous medium induced by a linearly stretchable surface. Symmetry, 11, 331(2019) [11] KHAN, U., SHAFIQ, A., ZAIB, A., WAKIF, A., and BALEANU, D. Numerical exploration of MHD Falkner-Skan Sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-Fourier heat-flux theory. Alexandria Engineering Journal, 59, 4851–4864(2020) [12] KHAN, M. I., WAQAS, M., HAYAT, T., and ALSAEDI, A. A comparative study of Casson fluid with homogeneous-heterogeneous reactions. Journal of Colloid and Interface Science, 498, 85–90(2017) [13] BRIMMO, A. T. and QASAIMEH, M. A. Stagnation point flows in analytical chemistry and life sciences. RSC Advances, 7, 51206–51232(2017) [14] ATTIA, H. A. Stagnation point flow and heat transfer of a micropolar fluid with uniform suction or blowing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 30, 51–55(2008) [15] HIEMENZ, K. Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytechnisches Journal, 326, 321–324(1911) [16] MAHAPATRA, T. R. and GUPTA, A. S. Heat transfer in stagnation-point flow towards a stretching sheet. Heat and Mass Transfer, 38, 517–521(2002) [17] WAKIF, A. A novel numerical procedure for simulating steady MHD convective flows of radiative Casson fluids over a horizontal stretching sheet with irregular geometry under the combined influence of temperature-dependent viscosity and thermal conductivity. Mathematical Problem in Engineering, 2020, 1675350(2020) [18] SUTTERBY, J. L. Laminar converging flow of dilute polymer solutions in conical sections: part I, viscosity data, new viscosity model, tube flow solution. AIChE Journal, 12, 63–68(1966) [19] BATRA, R. L. and EISSA, M. Helical flow of a Sutterby model fluid. Polymer Plastic Technology and Engineering, 33, 489–501(1994) [20] SOHAIL, M. and NAZ, R. Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby fluid flow in stretching cylinder. Physica A: Statistical Mechanics and Its Applications, 549, 124088(2020) [21] REHMAN, S. U., MIR, N. A., ALQARNI, M. S., FAROOQ, M., and MALIK, M. Y. Analysis of heat generation/absorption in thermally stratified Sutterby fluid flow with Cattaneo-Christov theory. Microsystem Technologies, 25, 3365–3373(2019) [22] USMAN, LIN, P., and GHAFFARI, A. Heat and mass transfer in a steady flow of Sutterby nanofluid over the surface of a stretching wedge. Physica Scripta, 96, 065003(2021) [23] ALI, F., LOGANATHAN, K., PRABU, E., ESWARAMOORTHI, S., FAIZAN, M., ZAIB, A., and CHAUDHARY, D. K. Entropy minimization on Sutterby nanofluid past a stretching surface with swimming of gyrotactic microorganisms and nanoparticles. Mathematical Problems in Engineering, 2021, 5759671(2021) [24] KHAN, M. I., QAYYUM, S., HAYAT, T., and ALSEADI, A. Stratified flow of Sutterby fluid homogeneous-heterogeneous reaction and Cattaneo-Christov heat flux. International Journal of Numerical Methods for Heat & Fluid Flow, 29, 2977–2992(2019) [25] LIU, C. S., CHANG, C. W., and CHANG, J. R. A new shooting method for solving boundary layer equations in fluid mechanics. Computer Modeling in Engineering & Sciences, 32, 1–16(2008) [26] BIBI, M., REHMAN, K. U., MALIK, M. Y., and TAHIR, M. Numerical study of unsteady Williamson fluid flow and heat transfer in the presence of MHD through a permeable stretching surface. The European Physical Journal Plus, 133, 154(2018) [27] REDDY, R. R. S. Numerical solution of MHD Casson fluid flow due to a moving extensible surface with second-order velocity slip and carbon nanotubes. Engineering Transactions, 66, 263–279(2018) [28] ALLAN, F. M. and HAJJI, M. A. Multi-layer parallel shooting method for multi-layer boundary value problems. 2009 International Conference on Innovations in Information Technology (IIT), IEEE, Al Ain, 289–293(2009) [29] GHAFFARI, A., JAVED, T., and MUSTAFA, I. Non-linear radiation influence on oblique stagnation point flow of Maxwell fluid. Revista Mexicana de Física, 64, 420–428(2018) [30] PATIL, V. S., PATIL, N. S., and TIMOL, M. G. A remark on similarity analysis of boundary layer equations of a class of non-Newtonian fluids. International Journal of Non-Linear Mechanics, 71, 127–131(2015) [31] FU, W., SUN, L., CAO, H., CHEN, L., ZHOU, M., SHEN, S., ZHU, Y., and ZHUANG, S. Qualitative and quantitative recognition of volatile organic compounds in their liquid phase based on terahertz microfluidic EIT meta-sensors. IEEE Sensors Journal, 23(12), 12775–12784(2023) [32] FAN, X., WEI, G., LIN, X., WANG, X., SI, Z., ZHANG, X., SHAO, Q., MANGIN, S., FULLERTON, E., JIANG, L., and ZHAO, W. Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter, 2(6), 1582–1593(2020) [33] DAI, Z., XIE, J., and JIANG, M. A coupled peridynamics-smoothed particle hydrodynamics model for fracture analysis of fluid-structure interactions. Ocean Engineering, 279, 114582(2023) [34] DU, S., XIE, H., YIN, J., FANG, T., ZHANG, S., SUN, Y., CAI, C., BI, G., CHEN, Z., XIAO, D., CHEN, W., YANG, X. G., WANG, D., YIN, W. Y., and ZHENG, R. Competition pathways of energy relaxation of hot electrons through coupling with optical, surface, and acoustic phonons. The Journal of Physical Chemistry C, 127(4), 1929–1936(2023) [35] SHAO, Z., ZHAI, Q., and GUAN, X. Physical-model-aided data-driven linear power flow model: an approach to address missing training data. IEEE Transactions on Power Systems, 38(3), 2970–2973(2023) [36] LI, M., YANG, M., YU, Y., and LEE, W. A wind speed correction method based on modified hidden Markov model for enhancing wind power forecast. IEEE Transactions on Industry Applications, 58(1), 656–666(2021) [37] BAI, B., ZHOU, R., YANG, G., ZOU, W., and YUAN, W. The constitutive behavior and dissociation effect of hydrate-bearing sediment within a granular thermodynamic framework. Ocean Engineering, 268, 113408(2023) [38] XIANG, J., DENG, L., ZHOU, C., ZHAO, H., HUANG, J., and TAO, S. Heat transfer performance and structural optimization of a novel micro-channel heat sink. Chinese Journal of Mechanical Engineering, 35(1), 38(2020) [39] XIANG, J., YANG, W., LIAO, H., LI, P., CHEN, Z., and HUANG, J. Design and thermal performance of thermal diode based on the asymmetric flow resistance in vapor channel. International Journal of Thermal Sciences, 191, 108345(2023) [40] XIANG, J., LIAO, J., ZHU, Z., LI, P., CHEN, Z., HUANG, J., and CHEN, X. Directional fluid spreading on microfluidic chip structured with microwedge array. Physics of Fluids, 35(6), 62005(2023) [41] CHEN, D., WANG, Q., LI, Y., LI, Y., ZHOU, H., and FAN, Y. A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere, 247, 125869(2020) [42] LI, S., ALI, F., ZAIB, A., LOGANATHAN, K., ELDIN, S. M., and KHAN, M. I. Bioconvection effect in the Carreau nanofluid with Cattaneo-Christov heat flux using stagnation point flow in the entropy generation: micromachines level study. Open Physics, 21, 20220228(2023) [43] LI, S., KHAN, M. I., ALZAHRANI, F., and ELDIN, S. M. Heat and mass transport analysis in radiative time dependent flow in the presence of Ohmic heating and chemical reaction, viscous dissipation: an entropy modeling. Case Studies in Thermal Engineering, 42, 102722(2023) [44] LI, S., PUNEETH, V., SAEED, A. M., SINGHAL, A., AL-YARIMI, F. A. M., KHAN, M. I., and ELDIN, S. M. Analysis of the Thomson and Troian velocity slip for the flow of ternary nanofluid past a stretching sheet. Scientific Reports, 13, 2340(2023) [45] LIU, Z., LI, S., SADAF, T., KHAN, S. U., ALZAHRANI, F., KHAN, M. I., and ELDIN, S. M. Numerical bio-convective assessment for rate type nanofluid influenced by Nield thermal constraints and distinct slip features. Case Studies in Thermal Engineering, 44, 102821(2023) |