[1] SEERS, B., TOMLINSON, R., and FAIRCLOUGH, P. Residual stress in fiber reinforced thermosetting composites: a review of measurement techniques. Polymer Composites, 42(4), 1631– 1647(2021) [2] ANDRIANOV, I. V., DANISHEVSKYY, V. V., TOPOL, H., and ROGERSON, G. A. Propagation of Floquet-Bloch shear waves in viscoelastic composites: analysis and comparison of interface/interphase models for imperfect bonding. Acta Mechanica, 228, 1177–1196(2017) [3] ANDRIANOV, I. V., TOPOL, H., and DANISHEVSKYY, V. V. Asymptotic analysis of heat transfer in composite materials with nonlinear thermal properties. International Journal of Heat and Mass Transfer, 111, 736–754(2017) [4] ANDRIANOV, I. V., DANISHEVSKYY, V. V., and TOPOL, H. Local stress distribution in composites for pulled-out fibers with axially varying bonding. Acta Mechanica, 231(5), 2065– 2083(2020) [5] BALZANI, D., SCHRODER, J., and GROSS, D. Numerical simulation of residual stresses in arterial walls. Computational Materials Science, 39(1), 117–123(2007) [6] CARDAMONE, L., VALENTIN, A., EBERTH, J. F., and HUMPHREY, J. D. Origin of axial prestretch and residual stress in arteries. Biomechanics and Modeling in Mechanobiology, 8, 431– 446(2009) [7] MERODIO, J. and OGDEN, R. W. Extension, inflation and torsion of a residually stressed circular cylindrical tube. Continuum Mechanics and Thermodynamics, 28, 157–174(2016) [8] MELNIKOV, A., MERODIO, J., BUSTAMANTE, R., and DORFMANN, L. Bifurcation analysis of residually stressed neo-Hookean and Ogden electroelastic tubes. Philosophical Transactions of the Royal Society A, 380(2234), 20210331(2022) [9] SIGAEVA, T., SOMMER, G., HOLZAPFEL, G. A., and DI MARTINO, E. S. Anisotropic residual stresses in arteries. Journal of the Royal Society Interface, 16(151), 20190029(2019) [10] DEHGHANI, H., DESENA-GALARZA, D., JHA, N. K., REINOSO, J., and MERODIO, J. Bifurcation and post-bifurcation of an inflated and extended residually-stressed circular cylindrical tube with application to aneurysms initiation and propagation in arterial wall tissue. Finite Elements in Analysis and Design, 161, 51–60(2019) [11] DESENA-GALARZA, D., DEHGHANI, H., JHA, N. K., REINOSO, J., and MERODIO, J. Computational bifurcation analysis for hyperelastic residually stressed tubes under combined inflation and extension and aneurysms in arterial tissue. Finite Elements in Analysis and Design, 197, 103636(2021) [12] FONT, A., JHA, N. K., DEHGHANI, H., REINOSO, J., and MERODIO, J. Modelling of residually stressed, extended and inflated cylinders with application to aneurysms. Mechanics Research Communications, 111, 103643(2021) [13] SHARIFF, M. H. B. M. and MERODIO, J. Residually stressed fiber reinforced solids: a spectral approach. Materials, 13(18), 4076(2020) [14] SHARIFF, M. H. B. M., MERODIO, J., and BUSTAMANTE, R. Finite deformations of fibrereinforced elastic solids with fibre bending stiffness: a spectral approach. Journal of Applied and Computational Mechanics, 8(4), 1332–1342(2022) [15] SHARIFF, M. H. B. M., MERODIO, J., and BUSTAMANTE, R. Nonlinear elastic constitutive relations of residually stressed composites with stiff curved fibres. Applied Mathematics and Mechanics (English Edition), 43(10), 1515–1530(2022) https://doi.org/10.1007/s10483-022-2910-7 [16] DORFMANN, L. and OGDEN, R. W. The effect of residual stress on the stability of a circular cylindrical tube. Journal of Engineering Mathematics, 127(9), 1–19(2021) [17] TOPOL, H., GOU, K., DEMIRKOPARAN, H., and PENCE, T. J. Hyperelastic modeling of the combined effects of tissue swelling and deformation-related collagen renewal in fibrous soft tissue. Biomechanics and Modeling in Mechanobiology, 17(6), 1543–1567(2018) [18] TOPOL, H., JHA, N. K., DEMIRKOPARAN, H., STOFFEL, M., and MERODIO, J. Bulging of inflated membranes made of fiber reinforced materials with different natural configurations. European Journal of Mechanics-A/Solids, 96, 104670(2022) [19] TOPOL, H., ASGHARI, H., STOFFEL, M., MARKERT, B., and MERODIO, J. Post-bifurcation of inflated fibrous cylindrical membranes under different fiber configurations. European Journal of Mechanics-A/Solids, 101, 105065(2023) [20] GOU, K., TOPOL, H., DEMIRKOPRARAN, H., and PENCE, T. J. Stress-swelling finite element modeling of cervical response with homeostatic collagen fiber distributions. Journal of Biomechanical Engineering, 142(8), 081002(2020) [21] MURPHY, J. G. and RAJAGOPAL, K. R. Inflation of residually stressed fung-type membrane models of arteries. Journal of the Mechanical Behavior of Biomedical Materials, 122, 104699(2021) [22] MYNENI, M. and RAJAGOPAL, K. R. Constitutive modeling of the mechanical response of arterial tissues. Applications in Engineering Science, 11, 100111(2022) [23] SAISANA, M., SALTELLI, A., and TARANTOLA, S. Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators. Journal of the Royal Statistical Society Series A: Statistics in Society, 168(2), 307–323(2005) [24] ANSTETT-COLLIN, F., MARA, T., and BASSET, M. Application of global sensitivity analysis to a tire model with correlated inputs. Simulation Modelling Practice and Theory, 44, 54–62(2014) [25] FREY, H. C. and PATIL, S. R. Identification and review of sensitivity analysis methods. Risk analysis, 22(3), 553–578(2002) [26] MARA, T. A. Extension of the RBD-FAST method to the computation of global sensitivity indices. Reliability Engineering and System Safety, 94(8), 1274–1281(2009) [27] ASGHARI, H., TOPOL, H., MARKERT, B., and MERODIO, J. Application of sensitivity analysis in extension, inflation, and torsion of residually stressed circular cylindrical tubes. Probabilistic Engineering Mechanics, 73, 103469(2023) [28] BRATLEY, P., FOX, B. L., and NIEDERREITER, H. Implementation and tests of lowdiscrepancy sequences. ACM Transactions on Modeling and Computer Simulation (TOMACS), 2(3), 195–213(1992) [29] OAKLEY, J. E. and O’HAGAN, A. Probabilistic sensitivity analysis of complex models: a Bayesian approach. Journal of the Royal Statistical Society Series B: Statistical Methodology, 66(3), 751–769(2004) [30] BECKER, W. Metafunctions for benchmarking in sensitivity analysis. Reliability Engineering and System Safety, 204, 107189(2020) [31] ISHIGAMI, T. and HOMMA, T. An importance quantification technique in uncertainty analysis for computer models. First International Symposium on Uncertainty Modeling and Analysis, IEEE, Maryland (1990) [32] BARZOAND, P., MARMAROU, A., FATOUROS, P., HAYASAKI, K., and CORWIN, F. Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. Journal of Neurosurgery, 87(6), 900–907(1997) [33] D’LIMA, D. D., HASHIMOTO, S., CHEN, P. C., COLWELL, C. W., JR., and LOTZ, M. K. Impact of mechanical trauma on matrix and cells. Clinical Orthopaedics and Related Research (1976-2007), 391, S90–S99(2001) [34] TRACEY, K. J. The inflammatory reflex. nature, 420(6917), 853–859(2002) [35] AL-CHLAIHAWI, M. J., TOPOL, H., DEMIRKOPARAN, H., and MERODIO, J. On prismatic and bending bifurcations of fiber-reinforced elastic membranes under swelling with application to aortic aneurysms. Mathematics and Mechanics of Solids, 28(1), 108–123(2023) [36] TOPOL, H., Al-CHALAIHAWI, M. J., DEMIRKOPARAN, H., and MERODIO, J. Bulging initiation and propagation in fiber-reinforced swellable Mooney-Rivlin membranes. Journal of Engineering Mathematics, 128(8), 1–15(2021) [37] TOPOL, H., Al-CHALAIHAWI, M. J., DEMIRKOPARAN, H., and MERODIO, J. Bifurcation of fiber-reinforced cylindrical membranes under extension, inflation, and swelling. Journal of Applied and Computational Mechanics, 9(1), 113–128(2023) [38] HAMDAOUI, M. E., MERODIO, J., OGDEN, R. W., and RODRIGUEZ, J. Finite elastic deformations of transversely isotropic circular cylindrical tubes. International Journal of Solids and Structures, 21(5), 1188–1196(2014) [39] SALTELLI, A., TARANTOLA, S., and CAMPOLONGO, F. Sensitivity analysis as an ingredient of modeling. Statistical Science, 15(4), 377–395(2000) [40] CUKIER, R. I., FORTUIN, C. M., SHULER, K. E., PETSCHEK, A. G., and SCHAIBLY, J. H. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients, I: theory. Journal of Chemical Physics, 59(8), 3873–3878(1973) [41] SALTELLIi, A., TARANTOLA, S., and CHAN, K. P. S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41(1), 39–56(1999) [42] XU, C. and GERTNER, G. Understanding and comparisons of different sampling approaches for the Fourier amplitudes sensitivity test (FAST). Computational Statistics & Data Analysis, 55(1), 184–198(2011) [43] SALTELLI, A. and BOLADO, R. An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics and Data Analysis, 26(4), 445–460(1998) [44] SALTELLI, A., CHAN, K., and SCOTT, M. Sensitivity Analysis, John Wiley & Sons, New Jersey (2000) [45] KALA, Z. Benchmark of goal-oriented sensitivity analysis methods using ishigami function. International Journal of Mathematical and Computational Methods, 3, 43–50(2018) [46] MCKAY, M. D., BECKMAN, R. J., and CONOVER, W. J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1), 55–61(2000) [47] JOHNSON, N. L., KOTZ, S. I., and BALAKRISHNAN, N. Beta distributions. Continuous Univariate Distributions, 2, 210–275(1994) [48] MUN, J. Understanding and choosing the right probability distributions. Advanced Analytical Models, John Wiley & Sons, New Jersey (2015) [49] SALTELLI, A., RATTO, M., ANDRES, T., CAMPLONGO, F., CARIBONI, J., GATELLI, D., SAISANA, M., and TARANTOLA, S. Global Sensitivity Analysis: The Primer, John Wiley & Sons, New Jersey (2008) [50] ALHAYANI, A. A., GIRALDO, J. A., RODRIGUEZ, J., and MERODIO, J. Computational modelling of bulging of inflated cylindrical shells applicable to aneurysm formation and propagation in arterial wall tissue. Finite Elements in Analysis and Design, 73(3), 20–29(2013) [51] ALTHOBAITI, A. Effect of torsion on the initiation of localized bulging in a hyperelastic tube of arbitrary thickness. Zeitschrift für Angewandte Mathematik und Physik, 73(4), 137(2022) [52] JHA, N. K., MORADALIZADEH, S., REINOSO, J., TOPOL, H., and MERODIO, J. On the helical buckling of anisotropic tubes with application to arteries. Mechanics Research Communications, 128, 104067(2023) [53] JHA, N. K., REINOSO, J., DEHGHANI, H., and MERODIO, J. A computational model for fiber-reinforced composites: hyperelastic constitutive formulation including residual stresses and damage. Computational Mechanics, 63, 931–948(2019) [54] JHA, N. K., MERODIO, J., and REINOSO, J. A general non-local constitutive relation for residually stressed solids. Mechanics Research Communications, 101, 103421(2019) [55] RODRIGUEZ, J. and MERODIO, J. Helical buckling and postbuckling of pre-stressed cylindrical tubes under finite torsion. Finite Elements in Analysis and Design, 112, 1–10(2016) [56] VINH, P. C., ANH, V. T. N., MERODIO, J., and HUE, L. T. Explicit transfer matrices of pre-stressed elastic layers. International Journal of Non-Linear Mechanics, 106, 288–296(2018) [57] MELNIKOV, A. and MERODIO, J. Stability analysis of an inflated, axially extended, residually stressed circular cylindrical tube. Journal of Applied and Computational Mechanics, 9(3), 834–847(2023) [58] ZAMANI, V., PENCE, T. J., DEMIRKOPARAN, H., and TOPOL, H. Hyperelastic models for the swelling of soft material plugs in confined spaces. International Journal of Non-Linear Mechanics, 106, 297–309(2018) [59] GENT, A. N. A new constitutive relation for rubber. Rubber Chemistry and Technology, 69(1), 59–61(1996) [60] ARRUDA, E. M. and BOYCE, M. C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2), 389– 412(1993) [61] AMBROSI, D., BEN AMAR, M., CYRON, C. J., DESIMONE, A., GORIELY, A., HUMPHERY, J. D., and KUHL, E. Growth and remodelling of living tissues: perspectives, challenges and opportunities. Journal of the Royal Society Interface, 16(157), 20190233(2019) [62] TOPOL, H., DEMIRKOPARAN, H., and PENCE, T. J. On collagen fiber morphoelasticity and homeostatic remodeling tone. Journal of the Mechanical Behavior of Biomedical Materials, 113, 104154(2021) [63] SAINI, K., CHO, S., DOOLING, L. J., and DISCHER, D. E. Tension in fibrils suppresses their enzymatic degradation — a molecular mechanism for ‘use it or lose it’. Matrix Biology, 85, 34–46(2020) [64] TOPOL, H., DEMIRKOPARAN, H., and PENCE, T. J. Fibrillar collagen: a review of the mechanical modeling of strain-mediated enzymatic turnover. Applied Mechanics Reviews, 73(5), 050802(2021) [65] TOPOL, H., DEMIRKOPARAN, H., and PENCE, T. J. Morphoelastic fiber remodeling in pressurized thick-walled cylinders with application to soft tissue collagenous tubes. European Journal of Mechanics-A/Solids, 77, 103800(2019) |