[1] HUSSEIN, M. I., LEAMMY, M. J., and RUZZENE, M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Applied Mechanics Reviews, 66(4), 040802(2014) [2] LIAO, G. X., LUAN, C. C., WANG, Z. W., LIU, J. P., YAO, X. H., and FU, J. Z. Acoustic wave filtering strategy based on gradient acoustic metamaterials. Journal of Physics D: Applied Physics, 54(33), 335301(2021) [3] ZHU, R., LIU, X. N., HU, G. K., SUN, C. T., and HUANG, G. L. Achiral elastic metamaterial beam for broadband vibration suppression. Journal of Sound and Vibration, 333(10), 2759-2773(2014) [4] COLOMBI, A., ROUX, P., GUENNEAU, S., GUEGUEN, P., and CRASTER, R. V. Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Scientific Reports, 6, 19238(2016) [5] QI, S. B., OUDICH, M., LI, Y., and ASSOUAR, B. Acoustic energy harvesting based on a planar acoustic metamaterial. Applied Physics Letters, 108(26), 263501(2016) [6] LIU, Z., ZHANG, X., MAO, Y., ZHU, Y., YANG, Z., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289(5485), 1734-1736(2000) [7] BAE, M. H. and OH, J. H. Amplitude-induced bandgap: new type of bandgap for nonlinear elastic metamaterials. Journal of the Mechanics and Physics of Solids, 139, 103930(2020) [8] ZHU, H. P. and CHEN, H. Y. Parameter modulation of periodic waves and solitons in metamaterials with higher-order dispersive and nonlinear effects. Nonlinear Dynamics, 104(2), 1545-1554(2021) [9] FIORE, S., FINOCCHIO, G., ZIVIERI, R., CHIAPPINI, M., and GARESCI, F. Wave amplitude decay driven by anharmonic potential in nonlinear mass-in-mass systems. Applied Physics Letters, 117(12), 124101(2020) [10] MANKTELOW, K., LEAMY, M. J., and RUZZENE, M. Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dynamics, 63(1-2), 193-203(2011) [11] PATIL, G. U. and MATLACK, K. H. Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mechanica, 233(1), 1-46(2022) [12] BAE, M. H. and OH, J. H. Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency. Mechanical Systems and Signal Processing, 170, 108832(2022) [13] SEPEHRI, S., MASHHADI, M. M., and FAKHRABADI, M. M. S. Dispersion curves of electromagnetically actuated nonlinear monoatomic and mass-in mass lattice chains. International Journal of Mechanical Sciences, 214, 106896(2022) [14] HE, C., LIM, K. M., ZHANG, F., and JIANG, J. H. Dual-tuning mechanism for elastic wave transmission in a triatomic lattice with string stiffening. Wave Motion, 112, 102951(2022) [15] HE, C., LIM, K. M., LIANG, X., ZHANG, F., and JIANG, J. H. Tunable band structures design for elastic waves transmission in tension metamaterial chain. European Journal of Mechanics/A Solids, 92, 104881(2022) [16] FANG, L. Z. and LEAMY, M. J. Perturbation analysis of nonlinear evanescent waves in a one-dimensional monatomic chain. Physical Review E, 105(1), 014203(2022) [17] FORTUNATI, A., BACIGALUPO, A., LEPIDI, M., ARENA, A., and LACARBONARA, W. Nonlinear wave propagation in locally dissipative metamaterials via Hamiltonian perturbation approach. Nonlinear Dynamics, 108(2), 765-787(2022) [18] LIU, Y. H., YANG, J., YI, X. S., and CHRONOPOULOS, D. Enhanced suppression of low-frequency vibration transmission in metamaterials with linear and nonlinear inerters. Journal of Applied Physics, 131(10), 105103(2022) [19] FRONK, M. D. and LEAMY, M. J. Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials. Physical Review E, 100(3), 032213(2019) [20] MANKTELOW, K., LEAMY, M. J., and RUZZENE, M. Comparison of asymptotic and transfer matrix approaches for evaluating intensity-dependent dispersion in nonlinear photonic and phononic crystals. Wave Motion, 50(3), 494-508(2013) [21] ASHARI, A. K. and STEPHEN, N. G. On wave propagation in repetitive structures: two forms of transfer matrix. Journal of Sound and Vibration, 439, 99-112(2019) [22] ZHONG, W. X. Symplectic Solution Methodology in Applied Mechanics (in Chinese), Higher Education Press, Beijing (2006) [23] HOU, X. H., DENG, Z. C., and ZHOU, J. X. Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures. Applied Mathematics and Mechanics (English Edition), 31(11), 1371-1382(2010) https://doi.org/10.1007/s10483-010-1369-7 [24] HO, K. M., CHENG, C. H., YANG, Z., ZHANG, X. X., and SHENG, P. Broadband locally resonant sonic shields. Applied Physics Letters, 83(26), 5566-5568(2003) [25] GONG, C., FANG, X., and CHENG, L. Band degeneration and evolution in nonlinear triatomic metamaterials. Nonlinear Dynamics, 111, 97-112(2023) [26] CAMPANA, M. A., OUISSE, M., SADOULET-REBOUL, E., RUZZENE, M., NEILD, S., and SCARPA, F. Impact of non-linear resonators in periodic structures using a perturbation approach. Mechanical Systems and Signal Processing, 135, 106408(2020) [27] FANG, X., WEN, J. H., YIN, J. F., YU, D. L., and XIAO, Y. Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: theoretical study. Physical Review E, 94(5), 052206(2016) [28] CHEN, Z. Y., ZHOU, W. J., and LIM, C. W. Active control for acoustic wave propagation in nonlinear diatomic acoustic metamaterials. International Journal of Non-Linear Mechanics, 125, 103535(2020) [29] ZHOU, W. J., LI, X. P., WANG, Y. S., CHEN, W. Q., and HUANG, G. L. Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials. Journal of Sound and Vibration, 413, 250-269(2018) [30] BANERJEE, A., DAS, R., and CALIUS, E. P. Frequency graded 1D metamaterials: a study on the attenuation bands. Journal of Applied Physics, 122(7), 075101(2017) [31] BANERJEE, A. Flexural waves in graded metabeam lattice. Physics Letters A, 388, 127057(2021) [32] HU, G. B., AUSTIN, A. C. M., SOROKIN, V., and TANG, L. H. Metamaterial beam with graded local resonators for broadband vibration suppression. Mechanical Systems and Signal Processing, 146, 106982(2021) [33] MU, D., WANG, K. Y., SHU, H. S., and LU, J. H. Metamaterial beams with graded two-stage inertial amplification and elastic foundation. International Journal of Mechanical Sciences, 236, 107761(2022) [34] RICHOUX, O., DEPOLLIER, C., and HARDY, J. Propagation of mechanical waves in a one-dimensional nonlinear disordered lattice. Physical Review E, 73(2), 026611(2006) [35] YOUSEFZADEH, B. and PHANI, A. S. Supratransmission in a disordered nonlinear periodic structure. Journal of Sound and Vibration, 380, 242-266(2016) [36] HAO, S. M., WU, Z. J., LI, F. M., and ZHANG, C. Z. Enhancement of band-gap characteristics in disordered elastic metamaterial multi-span beams: theory and experiment. Mechanics Research Communications, 113, 103692(2021) [37] CELLI, P., YOUSEFZADEH, B., DARAIO, C., and GONELLA, S. Bandgap widening by disorder in rainbow metamaterials. Applied Physics Letters, 114(9), 091903(2019) [38] LIU, Y. J., HAN, C. Y., and LIU, D. Y. Broadband vibration suppression of graded/disorder piezoelectric metamaterials. Mechanics of Advanced Materials and Structures, 30(4), 710-723(2022) [39] LI, Y., BAKER, E., REISSMAN, T., SUN, C., and LIU, W. K. Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting. Applied Physics Letters, 111(25), 251903(2017) |