[1] WANG, X. Y., HONG, Q. Z., HU, Y., and SUN, Q. H. On the accuracy of two-temperature models for hypersonic nonequilibrium flow. Acta Mechanica Sinica, 39(2), 122–193(2023) [2] TU, G. H., CHEN, J. Q., YUAN, X. X., QING, T., DUAN, M. C., YANG, Q., DUAN, Y., CHEN, X., WAN, B. B., and XIANG, X. H. Progress in flight tests of hypersonic boundary layer transition. Acta Mechanica Sinica, 37(11), 1589–1609(2022) [3] CHEN, X. L. and FU, S. Progress in the research of hypersonic and highenthalpy boundary layer instabilities and transition. Chinese Journal of Theoretical and Applied Mechanics (in Chinese), 54(11), 2937–2957(2022) [4] ZHENG, X. J. and WANG, G. H. Progresses and challenges of high Reynolds number wall-bounded turbulence. Advances in Mechanics (in Chinese), 50(1), 202001(2020) [5] BRAGINSKII, S. I. Transport processes in a plasma. Reviews of Plasma Physics, 1(205), 205–311(1965) [6] NAGATA, Y., OTSU, H., YAMADA, K., and ABE, T. Influence of Hall effect on electrodynamic flow control for weakly ionized flow. 43rd AIAA Plasmadynamics and Lasers Conference, Currans Associates, Inc., NewYork, 38–47(2012) [7] STARR, S. C. and HOFFMANN, K. A. Parallel implementation for an MHD solver with equilibrium chemistry. AIAA Aviation 2020 Forum, American Institute of Aeronautics and Astronautics, Inc., Reston, 35–50(2020) [8] OTSU, H., KONIGORSKI, D., and ABE, T. Influence of Hall effect on electrodynamic heat shield system for reentry vehicles. AIAA Journal, 48(10), 2177–2186(2010) [9] CAI, Z. G., PAN, J. H., and NI, M. J. The evolution and instability of wake structure around an impulsively stopped sphere with a streamwise magnetic field for 600≤ Re ≤ 1400. Acta Mechanica Sinica, 38(10), 322070(2022) [10] WAINI, I., ISHAK, A., and POP, I. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Applied Mathematics and Mechanics (English Edition), 41(3), 507–520(2020) https://doi.org/10.1007/s10483-020-2584-7 [11] PENG, S. H., JIN, K., and ZHENG, X. J. Study on validity of low-magnetic-Reynolds-number assumption for hypersonic magnetohydrodynamic control. AIAA Journal, 60(12), 6536–6547(2022) [12] MACCORMACK, R., D’AMBROSIO, D., GIORDANO, D., LEE, J. K., and KIM, T. Plasmadynamic simulations with strong shock waves. 42nd AIAA Plasmadynamics and Lasers Conference in conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD), Currans Associates, Inc., NewYork, 3921(2011) [13] LEE, J. K., KIM, T., and MACCORMACK, R. W. Simulation of hypersonic flow within electromagnetic fields for heat flux mitigation. 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, American Institute of Aeronautics and Astronautics, Inc., Reston, 3503(2015) [14] ALVAREZ LAGUNA, A., LANI, A., DECONINCK, H., MANSOUR, N. N., and POEDTS, S. A fully-implicit finite-volume method for multi-fluid reactive and collisional magnetized plasmas on unstructured meshes. Journal of Computational Physics, 318, 252–276(2016) [15] ZHANG, F., POEDTS, S., LANI, A., KUŹMA, B., and MURAWSKI, K. Two-fluid modeling of acoustic wave propagation in gravitationally stratified isothermal media. The Astrophysical Journal, 911(2), 119(2021) [16] LEAKE, J. E., LUKIN, V. S., and LINTON, M. G. Magnetic reconnection in a weakly ionized plasma. Physics of Plasmas, 20(6), 061202(2013) [17] NI, L., JI, H., MURPHY, N. A., and JARA-ALMONTE, J. Magnetic reconnection in partially ionized plasmas. Proceedings of the Royal Society A, 476(2236), 20190867(2020) [18] POPESCU BRAILEANU, B., LUKIN, V. S., KHOMENKO, E., and DE VICENTE, Á. Two-fluid simulations of waves in the solar chromosphere, I: numerical code verification. Astronomy & Astrophysics, 627, A25(2019) [19] MANEVA, Y. G., ALVAREZ LAGUNA, A., LANI, A., and POEDTS, S. Multi-fluid modeling of magnetosonic wave propagation in the solar chromosphere: effects of impact ionization and radiative recombination. The Astrophysical Journal, 836(2), 197(2017) [20] FUJINO, T., YOSHINO, T., and ISHIKAWA, M. Numerical analysis of reentry trajectory coupled with magnetohydrodynamics flow control. Journal of Spacecraft and Rockets, 45(5), 911–920(2008) [21] PLEKHANOV, A. V. Some features of plasma bunches throwing to hypervelocities in a magnetoplasma accelerator. IEEE Transactions on Plasma Science, 48(5), 1279–1282(2020) [22] KAVA, T., EVANS, J., and BOYD, I. D. Numerical simulation of electron-beam powered plasma fueled engines. AIAA Propulsion and Energy 2021 Forum, American Institute of Aeronautics and Astronautics, Inc., Reston, 3241(2021) [23] KAVA, T., EVANS, J. A., and BOYD, I. D. Three-dimensional numerical analysis of plasma fueled engines. AIAA Aviation 2022 Forum, American Institute of Aeronautics and Astronautics, Inc., Reston, 3348(2022) [24] HILLIER, A., TAKASAO, S., and NAKAMURA, N. The formation and evolution of reconnectiondriven, slow-mode shocks in a partially ionised plasma. Astronomy & Astrophysics, 591, A112(2016) [25] PHUONG, L. L. A Numerical Study of Partially Ionised Plasma Using a 2D Two-Fluid Magnetohydrodynamic Code, Ph. D. dissertation, University of Northumbria at Newcastle, Newcastle, United Kingdom, 17–139(2020) [26] JIANG, G. S. and WU, C. C. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, 150(2), 561–594(1999) [27] LI, F. and SHU, C. W. Locally divergence-free discontinuous Galerkin methods for MHD equations. Journal of Scientific Computing, 22-23, 413–442(2005) [28] BALSARA, D. S. and SPICER, D. S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. Journal of Computational Physics, 149(2), 270–292(1999) [29] BALSARA, D. S. and DUMBSER, M. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. Journal of Computational Physics, 299, 687–715(2015) [30] YANG, Y., WAN, M. P., SHI, Y. P., YANG, K., and CHEN, S. Y. A hybrid scheme for compressible magnetohydrodynamic turbulence. Journal of Computational Physics, 306, 73–91(2016) [31] CHRISTLIEB, A. J., FENG, X., JIANG, Y., and TANG, Q. A high-order finite difference WENO scheme for ideal magnetohydrodynamics on curvilinear meshes. SIAM Journal on Scientific Computing, 40(4), A2631–A2666(2018) [32] FU, L. and TANG, Q. High-order low-dissipation targeted ENO schemes for ideal magnetohydrodynamics. Journal of Scientific Computing, 80(1), 692–716(2019) [33] SHUMLAK, U., LILLY, R., REDDELL, N., SOUSA, E., and SRINIVASAN, B. Advanced physics calculations using a multi-fluid plasma model. Computer Physics Communications, 182(9), 1767– 1770(2011) [34] SOUSA, E. M. and SHUMLAK, U. A blended continuous-discontinuous finite element method for solving the multi-fluid plasma model. Journal of Computational Physics, 326, 56–75(2016) [35] BALSARA, D. S., AMANO, T., GARAIN, S., and KIM, J. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism. Journal of Computational Physics, 318, 169–200(2016) [36] CROFT, K. A. and MOELLER, T. M. Validation of an SUPG finite element solver for the twofluid plasma model using the Brio-Wu MHD shock tube problem. AIAA Aviation 2019 Forum, American Institute of Aeronautics and Astronautics, Inc., Reston, 290–304(2019) [37] TÓTH, G. The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes. Journal of Computational Physics, 161(2), 605–652(2000) [38] POWELL, K. G. An Approximate Riemann Solver for Magnetohydrodynamics (That Works in More Than One Dimension), Technical Report, ICASE, Langley VA (1994) [39] EVANS, C. R. and HAWLEY, J. F. Simulation of magnetohydrodynamic flows — a constrained transport method. The Astrophysical Journal, 332(2), 659–677(1988) [40] AMANO, T. Divergence-free approximate Riemann solver for the quasi-neutral two-fluid plasma model. Journal of Computational Physics, 299, 863–886(2015) [41] MUNZ, C. D., OMMES, P., and SCHNEIDER, R. A three-dimensional finite-volume solver for the Maxwell equations with divergence cleaning on unstructured meshes. Computer Physics Communications, 130(1-2), 83–117(2000) [42] DEDNER, A., KEMM, F., KRÖNER, D., MUNZ, C. D., SCHNITZER, T., and WESENBERG, M. Hyperbolic divergence cleaning for the MHD equations. Journal of Computational Physics, 175(2), 645–673(2002) [43] LEAKE, J. E., LUKIN, V. S., LINTON, M. G., and MEIER, E. T. Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. The Astrophysical Journal, 760(2), 109(2012) [44] MUNZ, C. D., OMNES, P., SCHNEIDER, R., SONNENDRÜCKER, E., and VOß, U. Divergence correction techniques for Maxwell solvers based on a hyperbolic model. Journal of Computational Physics, 161(2), 485–511(2000) [45] HAKIM, A., LOVERICH, J., and SHUMLAK, U. A high resolution wave propagation scheme for ideal two-fluid plasma equations. Journal of Computational Physics, 219(1), 418–442(2006) [46] FU, L., HU, X. Y., and ADAMS, N. A. A family of high-order targeted ENO schemes for compressible-fluid simulations. Journal of Computational Physics, 305, 333–359(2016) [47] SHU, C. W. and OSHER, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2), 439–471(1988) [48] JIANG, Y., SHU, C. W., and ZHANG, M. P. An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM Journal on Scientific Computing, 35(2), A1137–A1160(2013) [49] YE, C. C., ZHANG, P. J. Y., WAN, Z. H., and SUN, D. J. An alternative formulation of targeted ENO scheme for hyperbolic conservation laws. Computers & Fluids, 238, 105368(2022) [50] GOTTLIEB, S., SHU, C. W., and TADMOR, E. Strong stability-preserving high-order time discretization methods. SIAM Review, 43(1), 89–112(2001) [51] THOMPSON, R. J., WILSON, A., MOELLER, T., and MERKLE, C. L. A strong conservative Riemann solver for the solution of the coupled Maxwell and Navier-Stokes equations. Journal of Computational Physics, 258, 431–450(2014) [52] ALVAREZ LAGUNA, A., OZAK, N., LANI, A., DECONINCK, H., and POEDTS, S. Fullyimplicit finite volume method for the ideal two-fluid plasma model. Computer Physics Communications, 231, 31–44(2018) [53] WRIGHT, A. J. and HAWKE, I. A resistive extension for ideal magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 491(4), 5510–5523(2020) [54] BRIO, M. and WU, C. C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, 75(2), 400–422(1988) [55] THOMPSON, R. J., WILSON, A., MOELLER, T., and MERKLE, C. L. Advected upstream splitting method for the coupled Maxwell and Navier-Stokes equations. AIAA Journal, 53(3), 638–653(2015) [56] LEE, D. and DEANE, A. E. An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics. Journal of Computational Physics, 228(4), 952–975(2009) [57] KAWAI, S. Divergence-free-preserving high-order schemes for magnetohydrodynamics: an artificial magnetic resistivity method. Journal of Computational Physics, 251, 292–318(2013) [58] FU, L. An efficient low-dissipation high-order TENO scheme for MHD flows. Journal of Scientific Computing, 90(1), 55(2022) [59] SHEN, Y. Q., ZHA, G. C., and HUERTA, M. A. E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO scheme. Journal of Computational Physics, 231(19), 6233–6247(2012) [60] SJÖGREEN, B. and YEE, H. A. High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows. Journal of Computational Physics, 364, 153–185(2018) [61] ORSZAG, S. A. and TANG, C. M. Small-scale structure of two-dimensional magnetohydrodynamic turbulence. Journal of Fluid Mechanics, 90(1), 129–143(1979) [62] HALPERN, F. D., SFILIGOI, I., KOSTUK, M., STEFAN, R., and WALTZ, R. E. Simulations of plasmas and fluids using anti-symmetric models. Journal of Computational Physics, 445, 110631(2021) |