Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (5): 911-930.doi: https://doi.org/10.1007/s10483-024-3113-9
• Articles • Previous Articles
Dan ZHANG1, Liangping YI1,2,*(), Zhaozhong YANG1, Jingqiang ZHANG3, Gang CHEN4, Ruoyu YANG5, Xiaogang LI1
Received:
2024-01-16
Online:
2024-05-03
Published:
2024-04-26
Contact:
Liangping YI
E-mail:ylpfrac@163.com
Supported by:
2010 MSC Number:
Dan ZHANG, Liangping YI, Zhaozhong YANG, Jingqiang ZHANG, Gang CHEN, Ruoyu YANG, Xiaogang LI. A phase-field model for simulating the propagation behavior of mixed-mode cracks during the hydraulic fracturing process in fractured reservoirs. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 911-930.
1 | JIANG, L., SAINOKI, A., MITRI, H. S., MA, N., LIU, H., and HAO, Z. Influence of fracture-induced weakening on coal mine gateroad stability. International Journal of Rock Mechanics and Mining Sciences, 88, 307- 317 (2016) |
2 | ECONOMIDES, M. J. and NOLTE, K. G. Reservoir Stimulation, Prentice Hall, Englewood Cliffs, NJ (1989) |
3 | GHASSEMI, A., TARASOVS, S., and CHENG, A. H. D. A 3-D study of the effects of thermomechanical loads on fracture slip in enhanced geothermal reservoirs. International Journal of Rock Mechanics and Mining Sciences, 44, 1132- 1148 (2007) |
4 | LI, N. Y., YU, J. J., WANG, C., ZHANG, S. W., LIU, X. K., KANG, J., WANG, Y., and DAI, Y. H. Fracturing technology with carbon dioxide: a review. Journal of Petroleum Science and Engineering, 205, 108793 (1087) |
5 |
GUO, D. L., JI, L. J., ZHAO, J. Z., and LIU, C. Q. 3-D fracture propagation simulation and production prediction in coalbed. Applied Mathematics and Mechanics (English Edition), 22 (4), 385- 393 (2001)
doi: 10.1023/A:1016337331556 |
6 | ZHOU, T., WANG, H. B., LI, F. X., LI, Y. Z., ZOU, Y. S., and ZHANG, C. Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs. Petroleum Exploration and Development, 47 (5), 1117- 1130 (2020) |
7 | YI, L. P., WAISMAN, H., YANG, Z. Z., and LI, X. G. A consistent phase field model for hydraulic fracture propagation in poroelastic media. Computer Methods in Applied Mechanics and Engineering, 372, 113396 (1133) |
8 | BAKHSHI, E., GOLSANAMI, N., and CHEN, L. J. Numerical modeling and lattice method for characterizing hydraulic fracture propagation: a review of the numerical, experimental, and field studies. Archives of Computational Methods in Engineering, 28, 3329- 3360 (2021) |
9 | YU, H., XU, W. L., LI, B., MICHEAL, M., WANG, Q., HUANG, M. C., MENG, S. W., LIU, H., and WU, H. A. Hydraulic fracturing and enhanced recovery in shale reservoirs: theoretical analysis to engineering applications. Energy & Fuels, 37, 9956- 9997 (2023) |
10 | REN, G., and YOUNIS, R. M. An integrated numerical model for coupled poro-hydro-mechanics and fracture propagation using embedded meshes. Computer Methods in Applied Mechanics and Engineering, 376, 113606 (1136) |
11 | WANG, Q., YU, H., XU, W. L., HUANG, H. W., LI, F. D., and WU, H. A. How does the heterogeneous interface influence hydraulic fracturing?. International Journal of Engineering Science, 195, 104000 (2024) |
12 |
ZENG, Q., BO, L., LIU, L., LI, X. L., SUN, J. M., HUANG, Z. Q., and YAO, J. Analysis of fracture propagation and shale gas production by intensive volume fracturing. Applied Mathematics and Mechanics (English Edition), 44 (8), 1385- 1408 (2023)
doi: 10.1007/s10483-023-3021-6 |
13 | TANG, H., WINTERFELD, P. H., WU, Y. S., HUANG, Z. Q., DI, Y., PAN, Z., and ZHANG, J. Integrated simulation of multi-stage hydraulic fracturing in unconventional reservoirs. Journal of Natural Gas Science and Engineering, 36, 875- 892 (2016) |
14 | LI, X. G., YI, L. P., YANG, Z. Z., LIU, C. Y., and YUAN, P. A coupling algorithm for simulating multiple hydraulic fracture propagation based on extended finite element method. Environmental Earth Sciences, 76, 1- 15 (2017) |
15 | CAO, T. D., HUSSAIN, F., and SCHREFLER, B. A. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations. Journal of the Mechanics and Physics of Solids, 111, 113- 133 (2018) |
16 | WANG, Q., YU, H., XU, W. L., LYU, C. S., ZHANG, J. N., MICHEAL, M., and WU, H. A. Spatial and temporal constraints of the cohesive modeling: a unified criterion for fluid-driven fracture. International Journal for Numerical Methods in Engineering, 124, 2756- 2782 (2023) |
17 | MIEHE, C., WELSCHINGER, F., and HOFACKER, M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 83, 1273- 1311 (2010) |
18 | JIANG, L., SAINOKI, A., MITRI, H. S., MA, N., LIU, H., and HAO, Z. Influence of fracture-induced weakening on coal mine gateroad stability. International Journal of Rock Mechanics and Mining Sciences, 88, 307- 317 (2016) |
19 | ZUO, P., and ZHAO, Y. P. Phase field modeling of lithium diffusion, finite deformation, stress evolution and crack propagation in lithium ion battery. Extreme Mechanics Letters, 9, 467- 479 (2016) |
20 | ZUO, P., and ZHAO, Y. P. A phase field model coupling lithium diffusion and stress evolution with crack propagation and application in lithium ion batteries. Physical Chemistry Chemical Physics, 17, 287- 297 (2015) |
21 | QIAN, K., PAWAR, A., LIAO, A., ANITESCU, C., WOOD, W. V., FEINBERG, A. W., RABCZUK, T., and ZHANG, Y. J. Modeling neuron growth using isogeometric collocation based phase field method. Scientific Reports, 12, 8120 (2022) |
22 | FRANCFORT, G. A., and MARIGO, J. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 46, 1319- 1342 (1998) |
23 | BOURDIN, B., FRANCFORT, G. A., and MARIGO, J. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 48, 797- 826 (2000) |
24 | MIEHE, C., HOFACKER, M., and WELSCHINGER, F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 199, 2765- 2778 (2010) |
25 | BOURDIN, B., CHUKWUDOZIE, C. P., and YOSHIOKA, K. A variational approach to the numerical simulation of hydraulic fracturing. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Texas (2012) |
26 | MIKELIC, A., WHEELER, M. F., and WICK, T. A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. Multiscale Modeling & Simulation, 13, 367- 398 (2015) |
27 | MIEHE, C., MAUTHE, S., and TEICHTMEISTER, S. Minimization principles for the coupled problem of Darcy-Biot-type fluid transport in porous media linked to phase field modeling of fracture. Journal of the Mechanics and Physics of Solids, 82, 186- 217 (2015) |
28 | SANTILLÁN, D., JUANES, R., and CUETO-FELGUEROSO, L. Phase field model of hydraulic fracturing in poroelastic media: fracture propagation. arrest, and branching under fluid injection and extraction. Journal of Geophysical Research: Solid Earth, 123, 2127- 2155 (2018) |
29 | ALDAKHEEL, F. A microscale model for concrete failure in poro-elasto-plastic media. Theoretical and Applied Fracture Mechanics, 107, 102517 (2020) |
30 | ZHANG, X., SLOAN, S. W., VIGNES, C., and SHENG, D. A modification of the phase-field model for mixed mode crack propagation in rock-like materials. Computer Methods in Applied Mechanics and Engineering, 322, 123- 136 (2017) |
31 | SCHLÜTER, A., WILLENBÜCHER, A., KUHN, C., and MÜLLER, R. Phase field approximation of dynamic brittle fracture. Computational Mechanics, 54, 1141- 1161 (2014) |
32 | AMBATI, M., GERASIMOV, T., and LORENZIS, L. D. Phase-field modeling of ductile fracture. Computational Mechanics, 55, 1017- 1040 (2015) |
33 | MIEHE, C., HOFACKER, M., SCHÄNZEL, L. M., and ALDAKHEEL, F. Phase field modeling of fracture in multi-physics problems, part Ⅱ: coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Computer Methods in Applied Mechanics and Engineering, 294, 486- 522 (2015) |
34 | MIEHE, C., and SCHÄNZEL, L. M. Phase field modeling of fracture in rubbery polymers, part Ⅰ: finite elasticity coupled with brittle failure. Journal of the Mechanics and Physics of Solids, 65, 93- 113 (2014) |
35 | XU, W. L., YU, H., ZHANG, J. N., LYU, C. S., WANG, Q., MICHEAL, M., and WU, H. A. Phase-field method of crack branching during SC-CO2 fracturing: a new energy release rate criterion coupling pore pressure gradient. Computer Methods in Applied Mechanics and Engineering, 399, 115366 (2022) |
36 | ARRIAGA, M., and WAISMAN, H. Stability analysis of the phase-field method for fracture with a general degradation function and plasticity induced crack generation. Mechanics of Materials, 116, 33- 48 (2018) |
37 | SHEN, R. L., WAISMAN, H., and GUO, L. Fracture of viscoelastic solids modeled with a modified phase field method. Computer Methods in Applied Mechanics and Engineering, 346, 862- 890 (2019) |
38 | LI, V. C. Mechanics of shear rupture applied to earthquake zones. Fracture Mechanics of Rock, Academic Press, New York (1986) |
39 | BIOT, M. A. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33 (4), 1482- 1498 (1962) |
40 | ZHANG, D., YI, L., YANG, Z., LI, X., and ZHANG, F. Phase field model for simulating hydraulic fracture propagation and oil-water two-phase flow in reservoir. Computer Methods in Applied Mechanics and Engineering, 404, 115838 (2023) |
41 | INGRAFFEA, A. R., and HEUZE, F. E. Finite element models for rock fracture mechanics. International Journal for Numerical and Analytical Methods in Geomechanics, 4 (1), 25- 43 (1980) |
42 | CHEN, Y., NAGAYA, Y., and ISHIDA, T. Observations of fractures induced by hydraulic fracturing in anisotropic granite. Rock Mechanics and Rock Engineering, 48 (4), 1455- 1461 (2015) |
43 | DENG, B., YIN, G., LI, M., ZHANG, D., LU, J., LIU, Y., and CHEN, J. Feature of fractures induced by hydrofracturing treatment using water and L-CO2 as fracturing fluids in laboratory experiments. Fuel, 226, 35- 46 (2018) |
44 | YANG, C. X., YI, L. P., YANG, Z. Z., and LI, X. G. Numerical investigation of the fracture network morphology in multi-cluster hydraulic fracturing of horizontal wells: a DDM-FVM study. Journal of Petroleum Science and Engineering, 215, 110723 (2022) |
45 | WARPINSKI, N. R., and TEUFEL, L. W. Influence of geologic discontinuities on hydraulic fracture propagation. Journal of Petroleum Technology, 39, 209- 220 (1987) |
46 | ZHOU, J., CHEN, M., JIN, Y., and ZHANG, G. Q. Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs. International Journal of Rock Mechanics and Mining Sciences, 45, 1143- 1152 (2008) |
47 | ZHUANG, L., KIM, K. Y., JUNG, S. G., DIAZ, M., and MIN, K. B. Effect of water infiltration, injection rate and anisotropy on hydraulic fracturing behavior of granite. Rock Mechanics and Rock Engineering, 52, 575- 589 (2019) |
48 | WANG, Y., LI, X., and TANG, C. A. Effect of injection rate on hydraulic fracturing in naturally fractured shale formations: a numerical study. Environmental Earth Sciences, 75, 1- 16 (2016) |
49 | LI, Y., HU, W., ZHANG, Z., ZHANG, Z., SHANG, Y., HAN, L., and WEI, S. Numerical simulation of hydraulic fracturing process in a naturally fractured reservoir based on a discrete fracture network model. Journal of Structural Geology, 147, 104331 (2021) |
[1] | Lin Bai-song. ANISOTROPIC PLASTIC STRESS FIELD AT A MIXED-MODE CRACK TIP UNDER PLANE AND ANTI-PLANE STRAIN [J]. Applied Mathematics and Mechanics (English Edition), 1993, 14(7): 643-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||