Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (4): 663-682.doi: https://doi.org/10.1007/s10483-025-3236-7
Previous Articles Next Articles
Jianping LIU1, Zhaozhong YANG1, Liangping YI2,3,†(), Duo YI1, Xiaogang LI1
Received:
2024-11-07
Revised:
2025-01-26
Published:
2025-04-07
Contact:
Liangping YI, E-mail: ylpfrac@163.comSupported by:
2010 MSC Number:
Jianping LIU, Zhaozhong YANG, Liangping YI, Duo YI, Xiaogang LI. Coupled thermo-hydro-mechanical cohesive phase-field model for hydraulic fracturing in deep coal seams. Applied Mathematics and Mechanics (English Edition), 2025, 46(4): 663-682.
Table 1
Model parameters for hydraulic fracturing problem in multilayer reservoir"
Parameter | Symbol | Value | Unit | |
---|---|---|---|---|
Coal rock | Shale | |||
Young’s modulus of the intact matrix | 6 | 15 | GPa | |
Permeability of the intact matrix | 0.01 | 0.05 | mD | |
Porosity of the intact matrix | 0.05 | 0.05 | – | |
Young’s modulus of the skeleton grains | 8 | 20 | GPa | |
Poisson’s ratio | 0.3 | 0.21 | – | |
Fracturing fluid viscosity | 5 | mPa·s | ||
Critical energy release rate | 500 | 1 250 | N/m | |
Breaking strength | 5 | 12 | MPa | |
Density of porous media | 1 500 | 2 550 | kg/m3 | |
Fluid density | 1 000 | kg/m3 | ||
Density of skeleton grains | 1 700 | 2 800 | kg/m3 | |
Compressibility of the fluid | 1/MPa |
Table 3
Thermodynamic parameters of the heterogeneous non-isothermal coal seams"
Parameter | Symbol | Value | Unit | |
---|---|---|---|---|
Coal rock | Shale | |||
Thermal expansion coefficient | 1/℃ | |||
Thermal conductivity of fluid | 0.65 | W/(m ·℃) | ||
Thermal conductivity of skeleton grains | 1 | 1.5 | W/(m ·℃) | |
Specific heat capacity of the fluid | 4 000 | J/(kg ·℃) | ||
Specific heat capacity of the skeleton grains | 1 000 | J/(kg ·℃) |
[1] | ZHANG, C. L., WANG, E. Y., LI, B. B., KONG, X. G., XU, J., PENG, S. J., and CHEN, Y. X. Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam. Energy, 262, 125473 (2023) |
[2] | SONG, H. Q., ZUO, J. P., LIU, H. Y., and ZUO, S. H. The strength characteristics and progressive failure mechanism of soft rock-coal combination samples with consideration given to interface effects. International Journal of Rock Mechanics and Mining Sciences, 138, 104593 (2021) |
[3] | LIU, J. Z., SUN, H. T., LEI, Y., and CAO, J. Current situation and development trend of coalbed methane development and utilization technology in coal mine area. Journal of China Coal Society, 45(1), 258–267 (2020) |
[4] | WANG, Q., SU, X. B., SU, L. N., GUO, H. Y., SONG, J. X., and ZHU, Z. L. Theory and application of pseudo-reservoir hydraulic stimulation for coalbed methane indirect extraction in horizontal well: part 2, application. Natural Resources Research, 29, 3895–3915 (2020) |
[5] | ZHAO, H. F., LI, P. Y., LI, X. J., and YAO, W. J. Fracture propagation and evolution law of indirect fracturing in the roof of broken soft coal seams. International Journal of Coal Science & Technology, 11(1), 4 (2024) |
[6] | YUWANTO, S. H. and RIFA’I, M. A. Stereographic analysis of cleat characteristics in coal and its controlling forces. Journal of Earth and Marine Technology, 4(1), 78–84 (2023) |
[7] | LIU, J. P., YANG, Z. Z., YI, L. P., YI, D., and LI, X. G. Cohesive phase-field model for dynamic fractures in coal seams. International Journal of Mechanical Sciences, 282, 109617 (2024) |
[8] | GAO, L., KANG, X. T., HUANG, G., WANG, Z. Y., TANG, M., and SHEN, X. Y. Experimental study on crack extension rules of hydraulic fracturing based on simulated coal seam roof and floor. Geofluids, 2022(1), 7462201 (2022) |
[9] | LI, Y. C., XIAO, J. F., WANG, Y. X., and DENG, C. Numerical simulation investigation on fracture propagation of fracturing for crossing coal seam roof. Processes, 10(7), 1296 (2022) |
[10] | NGUYEN, H. T., LEE, J. H., and ELRAIES, K. A. A review of PKN-type modeling of hydraulic fractures. Journal of Petroleum Science and Engineering, 195, 107607 (2020) |
[11] | DONTSOV, E. and PEIRCE, A. Proppant transport in hydraulic fracturing: crack tip screen-out in KGD and P3D models. International Journal of Solids and Structures, 63, 206–218 (2015) |
[12] | NGUYEN, H. T., LEE, J. H., and ELRAIES, K. A. Review of pseudo-three-dimensional modeling approaches in hydraulic fracturing. Journal of Petroleum Exploration and Production Technology, 12(4), 1095–1107 (2022) |
[13] | YI, D., YANG, Z. Z., YI, L. P., LIU, J. P., YANG, C. X., ZHANG, D., DU, H. L., LI, X. G., and ZHANG, J. Q. Hydraulic fracturing phase-field model in porous viscoelastic media. International Journal of Mechanical Sciences, 272, 109171 (2024) |
[14] | SHU, B., ZHU, R. J., ZHANG, S. H., and DICK, J. A qualitative prediction method of new crack-initiation direction during hydraulic fracturing of pre-cracks based on hyperbolic failure envelope. Applied Energy, 248, 185–195 (2019) |
[15] | LINKE, M. and LAMMERING, R. On the calibration of the cohesive strength for cohesive zone models in finite element analyses. Theoretical and Applied Fracture Mechanics, 124, 103733 (2023) |
[16] | ZENG, Q. D., BO, L., LIU, L. J., LI, X. L., SUN, J. M., HUANG, Z. Q., and YAO, J. Analysis of fracture propagation and shale gas production by intensive volume fracturing. Applied Mathematics and Mechanics (English Edition), 44(8), 1385–1408 (2023) https://doi.org/10.1007/s10483-023-3021-6 |
[17] | LIU, J. P., YI, L. P., YANG, Z. Z., YI, D., LI, X. G., DENG, J. S., and YU, B. A phase-field model of hydraulic fractures in acidized porous media with strain-softening properties. Computers and Geotechnics, 171, 106392 (2024) |
[18] | ZHANG, D., YI, L. P., YANG, Z. Z., ZHANG, J. Q., CHEN, G., YANG, R. Y., and LI, X. G. A phase-field model for simulating the propagation behavior of mixed-mode cracks during the hydraulic fracturing process in fractured reservoirs. Applied Mathematics and Mechanics (English Edition), 45(5), 911–930 (2024) https://doi.org/10.1007/s10483-024-3113-9 |
[19] | YI, D., YI, L. P., YANG, Z. Z., MENG, Z., LI, X. G., YANG, C. X., and ZHANG, D. Coupled thermo-hydro-mechanical-phase field modelling for hydraulic fracturing in thermo-poroelastic media. Computers and Geotechnics, 166, 105949 (2024) |
[20] | YANG, Z. Z., LIU, J. P., YI, L. P., YANG, R. J., and LI, X. G. Elastoplastic damage analysis and structural optimization of soluble bridge plug based on phase field method. Mechanics of Materials, 189, 104899 (2024) |
[21] | WU, J. Y., QIU, J. F., NGUYEN, V. P., MANDAL, T. K., and ZHUANG, L. J. Computational modeling of localized failure in solids: XFEM vs PF-CZM. Computer Methods in Applied Mechanics and Engineering, 345, 618–643 (2019) |
[22] | MIEHE, C., WELSCHINGER, F., and HOFACKER, M. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 83(10), 1273–1311 (2010) |
[23] | MIEHE, C., HOFACKER, M., and WELSCHINGER, F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 199(45-48), 2765–2778 (2010) |
[24] | PHAM, K., AMOR, H., MARIGO, J. J., and MAURINI, C. Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics, 20(4), 618–652 (2011) |
[25] | BOURDIN, B., CHUKWUDOZIE, C., and YOSHIOKA, K. A variational approach to the numerical simulation of hydraulic fracturing. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 146951 (2012) |
[26] | CHUKWUDOZIE, C., BOURDIN, B., and YOSHIOKA, K. A variational approach to the modeling and numerical simulation of hydraulic fracturing under in-situ stresses. The 38th Workshop on Geothermal Reservoir Engineering, Stanford University, California (2013) |
[27] | MIKELIĆ, A., WHEELER, M. F., and WICK, T. A quasi-static phase-field approach to pressurized fractures. Nonlinearity, 28(5), 1371 (2015) |
[28] | LYU, C. S., YU, H., JIN, J., XU, W. L., HUANG, H. W., ZHANG, J. N., WANG, Q., LIU, J. D., JIANG, W. D., LIU, H., and WU, H. A. Multiphysics phase-field modeling for thermal cracking and permeability evolution in oil shale matrix during in-situ conversion process. International Journal of Rock Mechanics and Mining Sciences, 176, 105720 (2024) |
[29] | HUANG, H. W., YU, H., XU, W. L., LYU, C. S., MICHEAL, M., XU, H. Y., LIU, H., and WU, H. A. A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process. Energy, 268, 126700 (2023) |
[30] | WANG, Z. C. and ZHANG, C. S. Computational modelling of microwave-induced fractures in igneous rocks using phase field method. International Journal of Rock Mechanics and Mining Sciences, 176, 105719 (2024) |
[31] | LIU, J., XUE, Y., ZHANG, Q., SHI, F., WANG, H. M., LIANG, X., and WANG, S. H. Investigation of microwave-induced cracking behavior of shale matrix by a novel phase-field method. Engineering Fracture Mechanics, 271, 108665 (2022) |
[32] | WU, J. Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids, 103, 72–99 (2017) |
[33] | AMOR, H., MARIGO, J. J., and MAURINI, C. Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. Journal of the Mechanics and Physics of Solids, 57(8), 1209–1229 (2009) |
[34] | ZHOU, S. W., RABCZUK, T., and ZHUANG, X. Y. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Advances in Engineering Software, 122, 31–49 (2018) |
[35] | ZHOU, S. W., ZHUANG, X. Y., and RABCZUK, T. Phase-field modeling of fluid-driven dynamic cracking in porous media. Computer Methods in Applied Mechanics and Engineering, 350, 169–198 (2019) |
[36] | BAI, B., CHEN, M., JIN, Y., WEI, S. M., and ZHENG, H. Y. The thermoporoelastic coupling analysis of wellbore stability in shale formation under supercritical CO2 drilling conditions. Journal of Petroleum Science and Engineering, 220, 111146 (2023) |
[1] | Dan ZHANG, Liangping YI, Zhaozhong YANG, Jingqiang ZHANG, Gang CHEN, Ruoyu YANG, Xiaogang LI. A phase-field model for simulating the propagation behavior of mixed-mode cracks during the hydraulic fracturing process in fractured reservoirs [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 911-930. |
[2] | Shengyi TANG, Xubin PENG, Huadong YONG. Numerical simulation of the mechanical behavior of superconducting tape in conductor on round core cable using the cohesive zone model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1511-1532. |
[3] | HE Ming-Hua;XIN Ke-Gui. Separation work analysis of cohesive law and consistently coupled cohesive law [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(11): 1437-1446. |
[4] | WU Yan-qing;ZHANG Ke-shi. CRACK PROPAGATION IN POLYCRYSTALLINE ELASTIC-VISCOPLASTIC MATERIALS USING COHESIVE ZONE MODELS [J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(4): 509-518 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||