Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (8): 1591-1608.doi: https://doi.org/10.1007/s10483-025-3283-6
Previous Articles Next Articles
Haomin WANG, Lixun CAI†(), Huairong XIAO
Received:
2025-01-06
Revised:
2025-05-27
Published:
2025-07-28
Contact:
Lixun CAI, E-mail: lix_cai@263.netSupported by:
2010 MSC Number:
Haomin WANG, Lixun CAI, Huairong XIAO. A unified model for obtaining stress-strain relationship under spherical indenter loading and test application. Applied Mathematics and Mechanics (English Edition), 2025, 46(8): 1591-1608.
Table 2
Uniaxial tensile mechanical properties of the tested material"
Tested material | |||
---|---|---|---|
Cr17Ni4Cu4Nb | 202.2 | 963.3 | 1 013.0 |
Cr13 | 218.8 | 739.6 | 883.3 |
Cr12MoV | 216.9 | 772.2 | 929.0 |
Cr2MoVA | 211.7 | 931.4 | 1 046.0 |
CrMoA | 212.4 | 699.4 | 862.5 |
Cr2Ni4MoV | 203.2 | 1 076.0 | 1 150.0 |
Super pure-30Cr2Ni4MoV | 204.0 | 1 012.0 | 1 103.0 |
Cr13Mo | 215.3 | 609.8 | 757.7 |
Table 3
Test verification of the elastic modulus E prediction (hmax=60 μm)"
Material | Uniaxial tensile test | DUM-SPHI | Relative error/% | |
---|---|---|---|---|
1.587 | 05Cr17Ni4Cu4Nb | 202.2 | 196.5 | 2.90 |
2Cr13 | 218.8 | 219.9 | 0.48 | |
2Cr12MoV | 216.9 | 219.8 | 1.30 | |
25Cr2MoVA | 211.7 | 217.1 | 2.60 | |
35CrMoA | 212.4 | 216.7 | 2.00 | |
30Cr2Ni4MoV | 203.2 | 210.4 | 3.50 | |
Super pure-30Cr2Ni4MoV | 204.0 | 212.7 | 4.30 | |
1Cr13Mo | 215.3 | 213.7 | 0.73 | |
1 | 05Cr17Ni4Cu4Nb | 202.2 | 213.9 | 5.80 |
2Cr13 | 218.8 | 224.5 | 2.60 | |
2Cr12MoV | 216.9 | 221.1 | 1.90 | |
25Cr2MoVA | 211.7 | 219.1 | 3.50 | |
35CrMoA | 212.4 | 215.4 | 1.40 | |
30Cr2Ni4MoV | 203.2 | 213.5 | 5.10 | |
Super pure-30Cr2Ni4MoV | 204.0 | 207.1 | 1.50 | |
1Cr13Mo | 215.3 | 223.6 | 3.80 |
Table 4
Comparison of Rp0.2 and Rm (D=1.587 mm)"
Material | Uniaxial tensile test | DUM-SPHI | Relative error | |||
---|---|---|---|---|---|---|
Cr17Ni4Cu4Nb | 963.3 | 1 013.0 | 1 008.0 | 1 040.0 | 4.60/% | 2.70/% |
Cr13 | 739.6 | 883.3 | 747.4 | 889.7 | 1.10/% | 0.73/% |
Cr12MoV | 772.2 | 929.0 | 747.8 | 912.1 | 3.20/% | 1.80/% |
Cr2MoVA | 931.4 | 1 045.8 | 921.1 | 1 043.6 | 1.10/% | 0.21/% |
CrMoA | 699.4 | 862.5 | 666.7 | 822.8 | 4.70/% | 4.60/% |
Cr2Ni4MoV | 1 076.0 | 1 150.0 | 1 024.0 | 1 111.0 | 4.90/% | 3.40/% |
Super pure-30Cr2Ni4MoV | 1 012.0 | 1 103.0 | 963.9 | 1 067.0 | 4.80/% | 3.10/% |
Cr13Mo | 609.8 | 757.7 | 639.3 | 788.2 | 4.80/% | 4.00/% |
P92 | 511.4 | 718.5 | 504.1 | 724.7 | 1.40/% | 0.86/% |
A508-III | 426.8 | 682.1 | 411.6 | 683.3 | 3.60/% | 0.18/% |
SA302B | 463.3 | 591.5 | 467.3 | 602.1 | 0.87/% | 1.80/% |
Mn | 219.2 | 536.8 | 226.6 | 546.2 | 3.40/% | 1.80/% |
Cr | 764.3 | 889.5 | 743.0 | 871.5 | 2.80/% | 2.00/% |
MnR | 359.1 | 553.7 | 349.3 | 555.7 | 2.70/% | 0.36/% |
T91 | 656.8 | 823.1 | 624.1 | 807.0 | 4.90/% | 1.90/% |
Table 5
Comparison of Rp0.2 and Rm (D=1 mm)"
Material | Uniaxial tensile test | DUM-SPHI | Relative error | |||
---|---|---|---|---|---|---|
Cr17Ni4Cu4Nb | 963.3 | 1 013.0 | 942.3 | 1 057.0 | 2.20/% | 4.40/% |
Cr13 | 739.6 | 883.3 | 706.9 | 863.2 | 4.40/% | 2.30/% |
Cr12MoV | 772.2 | 929.0 | 758.3 | 909.7 | 1.80/% | 2.10/% |
Cr2MoVA | 931.4 | 1 046.0 | 907.7 | 1 030.0 | 2.60/% | 1.50/% |
CrMoA | 699.4 | 862.5 | 684.7 | 837.8 | 2.10/% | 2.90/% |
Cr2Ni4MoV | 1 076.0 | 1 150.0 | 1 069.0 | 1 135.0 | 0.71/% | 1.30/% |
Super pure-30Cr2Ni4MoV | 1 012.0 | 1 103.0 | 999.0 | 1 077.0 | 1.30/% | 2.40/% |
Cr13Mo | 609.8 | 757.7 | 610.5 | 764.0 | 0.11/% | 0.83/% |
[1] | BRINELL, J. A. Way of determining the hardness of bodies and some applications of the same. Teknisk Tidskrift, 5, 69 (1900) |
[2] | DOERNER, M. F. and NIX, W. D. A method for interpreting the data from depth-sensing indentation instruments. Journal of Materials Research, 1(4), 601–609 (1986) |
[3] | OLIVER, W. C. and PHARR, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564–1583 (1992) |
[4] | ZHANG, Z. J., CAI, L. X., CHEN, H., BAO, C., and LIU, X. K. Spherical indentation method to determine stress-strain relations and tensile strength of metallic materials (in Chinese). Chinese Journal of Theoretical and Applied Mechanics, 51(1), 159–169 (2019) |
[5] | TABOR, D. The Hardness of Metals, Oxford University Press, Oxford (2000) |
[6] | CHENG, Y. T. and CHENG, C. M. Scaling relationships in conical indentation of elastic-perfectly plastic solids. International Journal of Solids and Structures, 36(8), 1231–1243 (1999) |
[7] | HAGGAG, F. M. In-situ measurements of mechanical properties using novel automated ball indentation system. Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension, ASTM STP 1204, American Society for Testing and Materials, Philadelphia (1993) |
[8] | AHN, J. and KWON, D. Derivation of plastic stress-strain relationship from ball indentations: examination of strain definition and pileup effect. Journal of Materials Research, 16(11), 3170–3178 (2001) |
[9] | SI, S. Q., CAI, L. X., CHEN, H., BAO, C., and LIU, X. K. Theoretical model and testing method for ball indentation based on the proportional superposition of energy in pure elasticity and pure plasticity. Chinese Journal of Aeronautics, 35(2), 141–153 (2022) |
[10] | WU, S. B., XU, T., YU, C., and LU, Y. Y. Measurement of tensile properties of 16MnR steel by ball indentation method (in Chinese). Materials for Mechanical Engineering, 39(1), 82–85 (2015) |
[11] | CHEN, H., CAI, L. X., and BAO, C. Equivalent-energy indentation method to predict the tensile properties of light alloys. Materials & Design, 162, 322–330 (2019) |
[12] | HILL, R., STORAKERS, B., and ZDUNEK, A. B. A theoretical study of the Brinell hardness test. Proceedings of the Royal Society of London, Serials A: Mathematical and Physical Sciences, 423(1865), 301–330 (1989) |
[13] | JOHNSON, K. L. The correlation of indentation experiments. Journal of the Mechanics and Physics of Solids, 18(2), 115–126 (1970) |
[14] | ZHANG, T., JIANG, P., FENG, Y., and YANG, R. Numerical verification for instrumented spherical indentation techniques in determining the plastic properties of materials. Journal of Materials Research, 24, 3653–3663 (2009) |
[15] | JIANG, P., ZHANG, T., FENG, Y., YANG, R., and LIANG, N. Determination of plastic properties by instrumented spherical indentation: expanding cavity model and similarity solution approach. Journal of Materials Research, 24(3), 1045–1053 (2009) |
[16] | ATTAF, M. T. Connection between the loading curve models in elastoplastic indentation. Materials Letters, 58(27-28), 3491–3498 (2004) |
[17] | JIANG, P., ZHANG, T. H., YANG, R., and LIANG, N. G. Extraction of plastic mechanical parameters of materials based on spherical compression method (in Chinese). Chinese Journal of Theoretical and Applied Mechanics, 41(5), 730–738 (2009) |
[18] | HUBER, N. and TSAKMAKIS, C. Determination of constitutive properties from spherical indentation data using neural networks, part i: the case of pure kinematic hardening in plasticity laws. Journal of the Mechanics and Physics of Solids, 47(7), 1569–1588 (1999) |
[19] | TYULYUKOVSKIY, E. and HUBER, N. Identification of viscoplastic material parameters from spherical indentation data, part I: neural networks. Journal of Materials Research, 21(3), 664–676 (2006) |
[20] | ZHANG, C., LOU, Y., and ZHANG, S. Large strain flow curve identification for sheet metals under complex stress states. Mechanics of Materials, 161, 103997 (2021) |
[21] | YAO, D., CAI, L., and BAO, C. A new fracture criterion for ductile materials based on a finite element aided testing method. Materials Science and Engineering: A, 673, 633–647 (2016) |
[22] | CHEN, H. and CAI, L. X. Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle. Acta Materialia, 121, 181–189 (2016) |
[23] | CHEN, H. and CAI, L. X. Unified elastoplastic model based on strain energy equivalence principle. Applied Mathematical Modelling, 52, 664–671 (2017) |
[24] | CHEN, H. and CAI, L. X. An elastoplastic energy model for predicting the deformation behaviors of various structural components. Applied Mathematical Modelling, 68, 405–421 (2019) |
[25] | GB/T 37782-2019. Determination of Strength, Hardness and Stress-Strain Curves for Metallic Materials by Indentation Test (in Chinese), State Administration for Market Regulation and Standardization of China (2019) |
[26] | CHEN, H., CAI, L., and BAO, C. Equivalent-energy indentation method to predict the tensile properties of light alloys. Materials & Design, 162, 322–330 (2019) |
[27] | HOLLOMON, J. H. Tensile deformation. Metals Technology, 12, 268–290 (1945) |
[28] | HUANG, M., CAI, L., and HAN, G. Semi-analytical expressions to describe stress fields near the tip of Mode-I crack under plane-strain conditions. Applied Mathematical Modelling, 108, 724–747 (2022) |
[29] | HAN, G., CAI, L., XIAO, H., and HUANG, M. A novel flat indentation test method for obtaining stress-strain relationships of metallic materials based on energy density equivalence. International Journal of Solids and Structures, 269, 112–195 (2023) |
[30] | CHEN, H. Median Energy Equivalent Theory and Small Sample Material Test Method (in Chinese), Ph. D. dissertation, Southwest Jiaotong University, 32–33 (2019) |
[31] | ZHANG, S. Q. Discussion on goodness-of-fit indices for curved regression (in Chinese). Chinese Journal of Health Statistics, 19(1), 9–11 (2002) |
[1] | Weitao SUN. Determination of elastic moduli of composite medium containing bimaterial matrix and non-uniform inclusion concentrations [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(1): 15-28. |
[2] | Fei SHEN, Weiping HU, Qingchun MENG. New approach based on continuum damage mechanics with simple parameter identification to fretting fatigue life prediction [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(12): 1539-1554. |
[3] | Xuefen ZHAO, Xing LI, Shenghu DING. Two kinds of contact problems in three-dimensional icosahedral quasicrystals [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(12): 1569-1580. |
[4] | Zhixin ZHAN, Weiping HU, Miao ZHANG, Qingchun MENG. Revised damage evolution equation for high cycle fatigue life prediction of aluminum alloy LC4 under uniaxial loading [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(9): 1185-1196. |
[5] | Minwei CHEN, Min LI, Xuesong TANG. Moving line crack accompanied with damage zone subject to remote tensile loading [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(9): 1213-1222. |
[6] | Jiayu WU, Hong YUAN, Renhuai LIU. Theory and calculation of stress transfer between fiber and matrix [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(6): 815-826. |
[7] | R. BAGHERI, M. AYATOLLAHI, S. M. MOUSAVI. Analytical solution of multiple moving cracks in functionally graded piezoelectric strip [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(6): 777-792. |
[8] | Yang SUN;Wenjuan WANG;Binbin LI;Mabao LIU. Investigation on behavior of crack penetration/deflection at interfaces in intelligent coating system [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(4): 465-474. |
[9] | Xiang-wu PENG;Xing-ming GUO;Liang LIU;Bing-jie WU. Scale effects on nonlocal buckling analysis of bilayer composite plates under non-uniform uniaxial loads [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(1): 1-10. |
[10] | Wen-bin ZHAO;Xue-xia ZHANG;Xiao-chao CUI;Wei-yang YANG. Analysis of stress intensity factor in orthotropic bi-material mixed interface crack [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(10): 1271-1292. |
[11] | Wen-yan LIANG;Zhen-qing WANG;Fang LIU;Xiao-duo LIU. Elastic-viscoplastic field at mixed-mode interface crack-tip under compression and shear [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(7): 887-896. |
[12] | Yue-wu LIU;Wei-ping OU-YANG;Pei-hua ZHAO;Qian LU;Hui-jun FANG. Numerical well test for well with finite conductivity vertical fracture in coalbed [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(6): 729-740. |
[13] | M. GHADIRI; H. GHASEMI. Numerical methods for solving singular integral equations obtained by fracture mechanical analysis of cracked wedge [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(3): 311-324. |
[14] | K. MALEKZADEH FARD; M.M.MONFARED; K. NOROUZIPOUR. Determination of stress intensity factors in half-plane containing several moving cracks [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(12): 1535-1542. |
[15] | CAI Yan-hongCHEN Hao-ran;TANG Li-qiang;YAN Cheng;JIANG Wan. The dynamic stress intensity factor analysis of adhesively bonded material interface crack with damage under shear loading [J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(11): 1517-1526 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||