[1] |
Dongxu DU, Jun YANG, Wei SUN, Hongwei MA, Kunpeng XU.
The semi-analytical modeling and vibration reduction analysis of the cylindrical shell with piezoelectric shunt damping patches
[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1675-1700.
|
[2] |
Qingdong CHAI, Yanqing WANG, Meiwen TENG.
Nonlinear free vibration of spinning cylindrical shells with arbitrary boundary conditions
[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(8): 1203-1218.
|
[3] |
Xinlei LI, Jianfei WANG.
Effects of layer number and initial pressure on continuum-based buckling analysis of multi-walled carbon nanotubes accounting for van der Waals interaction
[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1857-1872.
|
[4] |
H. V. TUNG, L. T. N. TRANG.
Nonlinear stability of advanced sandwich cylindrical shells comprising porous functionally graded material and carbon nanotube reinforced composite layers under elevated temperature
[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(9): 1327-1348.
|
[5] |
S. BLOORIYAN, R. ANSARI, A. DARVIZEH, R. GHOLAMI, H. ROUHI.
Postbuckling analysis of functionally graded graphene platelet-reinforced polymer composite cylindrical shells using an analytical solution approach
[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(7): 1001-1016.
|
[6] |
M. MOHAMMADIMEHR, R. ROSTAMI.
Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields
[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(2): 219-240.
|
[7] |
Yanqing WANG, Chao YE, J. W. ZU.
Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities
[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(11): 1587-1604.
|
[8] |
Zeqing WAN, Shirong LI.
Thermal buckling analysis of functionally graded cylindrical shells
[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(8): 1059-1070.
|
[9] |
D. V. DUNG, N. T. NGA, L. K. HOA.
Nonlinear stability of functionally graded material (FGM) sandwich cylindrical shells reinforced by FGM stiffeners in thermal environment
[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(5): 647-670.
|
[10] |
A. MEHDITABAR, G. H. RAHIMI, S. ANSARI SADRABADI.
Three-dimensional magneto-thermo-elastic analysis of functionally graded cylindrical shell
[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(4): 479-494.
|
[11] |
D. V. DUNG, H. T. THIEM.
Mechanical and thermal postbuckling of FGM thick circular cylindrical shells reinforced by FGM stiffener system using higher-order shear deformation theory
[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(1): 73-98.
|
[12] |
M. AREFI, R. KARROUBI, M. IRANI-RAHAGHI.
Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer
[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(7): 821-834.
|
[13] |
M. D. NURUL IZYAN, K. K. VISWANATHAN, Z. A. AZIZ, K. PRABAKAR.
Free vibration of layered cylindrical shells filled with fluid
[J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(6): 803-820.
|
[14] |
XIANG Song;LI Guang-Chao;ZHANG Wei;YANG Ming-Rui.
Natural frequencies of rotating functionally graded cylindrical shells
[J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(3): 345-356.
|
[15] |
CAO Xiong-Tao;ZHANG Zhi-Yi;HUA Hong-Xing.
Free vibration of circular cylindrical shell with constrained layer damping
[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(4): 495-506.
|