[1] KUMAR, S., RANI, R., DILBAGHI, N., TANKESHWAR, K., and KIM, K. H. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chemical Society Reviews, 46, 158–196(2017) [2] YUAN, Y., ZHAO, K., SAHMANI, S., and SAFAEI, B. Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes. Applied Mathematics and Mechanics (English Edition), 41(4), 587–604(2020) https://doi.org/10.1007/s10483-020-2600-6 [3] SUN, T., GUO, J., and PAN, E. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium. Applied Mathematics and Mechanics (English Edition), 42(8), 1077–1094(2021) https://doi.org/10.1007/s10483-021-2743-6 [4] IIJIMA, S. Helical microtubes of graphitic carbon. nature, 354, 56–58(1991) [5] BAI, Y., ZHANG, R., YE, X., ZHU, Z., XIE, H., SHEN, B., CAI, D., LIU, B., ZHANG, C., JIA, Z., ZHANG, S., LI, X., and WEI, F. Carbon nanotube bundles with tensile strength over 80 GPa. Nature Nanotechnology, 13, 589–595(2018) [6] BHATTACHARYYA, A., SETH, G. S., KUMAR, R., and CHAMKHA, A. J. Simulation of Cattaneo-Christov heat flux on the flow of single and multi-walled carbon nanotubes between two stretchable coaxial rotating disks. Journal of Thermal Analysis and Calorimetry, 139, 1655– 1670(2019) [7] ABBASI, S. A., KIM, T. H., SOMU, S., WANG, H., CHAI, Z., UPMANYU, M., and BUSNAINA, A. Fabrication of a nanoelectromechanical bistable switch using directed assembly of SWCNTs. Journal of Physics D: Applied Physics, 53, 23LT02(2020) [8] SAMY, M. M., MOHAMED, M. G., EL-MAHDY, A. F. M., MANSOURE, T. H., WU, K. C., and KUO, S. W. High-performance supercapacitor electrodes prepared from dispersions of tetrabenzonaphthalene-based conjugated microporous polymers and carbon nanotubes. ACS Applied Materials and Interfaces, 13, 51906–51916(2021) [9] LEE, W. S. and CHOI, J. Hybrid integration of carbon nanotubes and transition metal dichalcogenides on cellulose paper for highly sensitive and extremely deformable chemical sensors. ACS Applied Materials and Interfaces, 11, 19363–19371(2019) [10] ZHANG, J. and WANG, C. Buckling of carbon honeycombs: a new mechanism for molecular mass transportation. The Journal of Physical Chemistry C, 121, 8196–8203(2017) [11] GENOESE, A., GENOESE, A., and SALERNO, G. Buckling and post-buckling analysis of single wall carbon nanotubes using molecular mechanics. Applied Mathematical Modelling, 83, 777–800(2020) [12] WANG, C. M., ZHANG, Y. Y., XIANG, Y., and REDDY, J. N. Recent studies on buckling of carbon nanotubes. Applied Mechanics Reviews, 63, 030804(2010) [13] SILVESTRE, N., FARIA, B., and CANONGIA LOPES, J. N. A molecular dynamics study on the thickness and post-critical strength of carbon nanotubes. Composite Structures, 94, 1352–1358(2012) [14] XU, X. J. and DENG, Z. C. Variational principles for buckling and vibration of MWCNTs modeled by strain gradient theory. Applied Mathematics and Mechanics (English Edition), 35(9), 1115–1128(2014) https://doi.org/10.1007/s10483-014-1855-6 [15] WANG, J. F., SHI, S. Q., YANG, J. P., and ZHANG, W. Multiscale analysis on free vibration of functionally graded graphene reinforced PMMA composite plates. Applied Mathematical Modelling, 98, 38–58(2021) [16] YAKOBSON, B. I., BRABEC, C. J., and BERNHOLC, J. Nanomechanics of carbon tubes: instabilities beyond linear response. Physical Review Letters, 76, 2511–2514(1996) [17] RU, C. Q. Effective bending stiffness of carbon nanotubes. Physical Review B, 62, 9973–9976(2000) [18] BIAN, L. C. and WANG, Y. W. Temperature-related study on buckling properties of double-walled carbon nanotubes. European Journal of Mechanics-A/Solids, 80, 103875(2020) [19] MOHAMED, N., MOHAMED, S. A., and ELTAHER, M. A. Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. Engineering with Computers, 37, 2823–2836(2020) [20] HE, X. Q., KITIPORNCHAI, S., and LIEW, K. M. Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. Journal of the Mechanics and Physics of Solids, 53, 303–326(2005) [21] SILVESTRE, N., WANG, C. M., ZHANG, Y. Y., and XIANG, Y. Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Composite Structures, 93, 1683–1691(2011) [22] LEISSA, A. W. Vibration of Shells, NASA, Washington, D. C. (1973) [23] LOUHGHALAM, A., IGUSA, T., and TOOTKABONI, M. Dynamic characteristics of laminated thin cylindrical shells: asymptotic analysis accounting for edge effect. Composite Structures, 112, 22–37(2014) [24] JAUNKY, N. and KNIGHT, N. F. An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression. International Journal of Solids and Structures, 36, 3799–3820(1999) [25] GULYAEV, V. I., LUGOVOI, P. Z., and LYSYUK, N. A. Propagation of harmonic waves in a cylindrical shell (Timoshenko model). International Applied Mechanics, 39, 472–478(2003) [26] XIANG, Y., WANG, C. M., LIM, C. W., and KITIPORNCHAI, S. Buckling of intermediate ring supported cylindrical shells under axial compression. Thin-Walled Structures, 43, 427–443(2005) [27] STROZZI, M., ELISHAKOFF, I. E., MANEVITCH, L. I., and GENDELMAN, O. V. Applicability and limitations of Donnell shell theory for vibration modelling of double-walled carbon nanotubes. Thin-Walled Structures, 178, 109532(2022) [28] TIMESLI, A., BRAIKAT, B., JAMAL, M., and DAMIL, N. Prediction of the critical buckling load of multi-walled carbon nanotubes under axial compression. Comptes Rendus Mécanique, 345, 158–168(2017) [29] GUPTA, S., PRAMANIK, S., SMITA, DAS, S. K., and SAHA, S. Dynamic analysis of wave propagation and buckling phenomena in carbon nanotubes (CNTs). Wave Motion, 104, 102730(2021) [30] HE, X. Q., QU, C., QIN, Q. H., and WANG, C. M. Buckling and postbuckling analysis of multiwalled carbon nanotubes based on the continuum shell model. International Journal of Structural Stability and Dynamics, 7, 629–645(2007) [31] YAO, X. and HAN, Q. Postbuckling prediction of double-walled carbon nanotubes under axial compression. European Journal of Mechanics-A/Solids, 26, 20–32(2007) [32] SUN, Y., YAO, X., and HAN, Q. Combined torsional buckling of double-walled carbon nanotubes with axial load in the multi-field coupled condition. Science China-Physics Mechanics & Astronomy, 54, 1659–1665(2011) [33] SUN, C., LIU, K., and HONG, Y. Dynamic shell buckling behavior of multi-walled carbon nanotubes embedded in an elastic medium. Science China-Physics Mechanics & Astronomy, 56, 483– 490(2013) [34] GARG, A., CHALAK, H. D., BELARBI, M. O., ZENKOUR, A. M., and SAHOO, R. Estimation of carbon nanotubes and their applications as reinforcing composite materials: an engineering review. Composite Structures, 272, 114234(2021) [35] RU, C. Q. Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium. Journal of the Mechanics and Physics of Solids, 49, 1265–1279(2001) [36] WANG, C. Y., RU, C. Q., and MIODUCHOWSKI, A. Axially compressed buckling of pressured multiwall carbon nanotubes. International Journal of Solids and Structures, 40, 3893–3911(2003) [37] WANG, J. F. and ZHANG, W. An equivalent continuum meshless approach for material nonlinear analysis of CNT-reinforced composites. Composite Structures, 188, 116–125(2018) [38] GHORBANPOUR ARANI, A., RAHMANI, R., AREFMANESH, A., and GOLABI, S. Buckling analysis of multi-walled carbon nanotubes under combined loading considering the effect of small length scale. Journal of Mechanical Science and Technology, 22, 429–439(2008) [39] HE, X. Q., KITIPORNCHAI, S., WANG, C. M., XIANG, Y., and ZHOU, Q. A nonlinear van der Waals force model for multiwalled carbon nanotubes modeled by a nested system of cylindrical shells. Journal of Applied Mechanics, 77, 061006(2010) [40] SAITO, R., DRESSELHAUS, G., and DRESSELHAUS, M. S. Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998) [41] HARIK, V. M. Mechanics of carbon nanotubes: applicability of the continuum-beam models. Computational Materials Science, 24, 328–342(2002) [42] SUN, C. Q., LIU, K. X., and HONG, Y. S. Axisymmetric compressive buckling of multi-walled carbon nanotubes under different boundary conditions. Acta Mechanica Sinica, 28, 83–90(2012) [43] RU, C. Q. Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. Journal of Applied Physics, 87, 7227–7231(2000) [44] SAITO, R., MATSUO, R., KIMURA, T., DRESSELHAUS, G., and DRESSELHAUS, M. S. Anomalous potential barrier of double-wall carbon nanotube. Chemical Physics Letters, 348, 187– 193(2001) [45] HE, X. Q., KITIPORNCHAI, S., WANG, C. M., and LIEW, K. M. Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells. International Journal of Solids and Structures, 42, 6032–6047(2005) [46] AMABILI, M. A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach. Journal of Sound and Vibration, 264, 1091–1125(2003) [47] LIEW, K. M., WONG, C. H., HE, X. Q., TAN, M. J., and MEGUID, S. A. Nanomechanics of single and multiwalled carbon nanotubes. Physical Review B, 69, 115429(2004) [48] SHI, J. X., NATSUKI, T., and NI, Q. Q. Radial buckling of multi-walled carbon nanotubes under hydrostatic pressure. Applied Physics A-Materials Science & Processing, 117, 1103–1108(2014) |