[1] DU, Y., ZHOU, S. X., JING, X. J., PENG, Y. P., WU, H. K., and KWOK, N. Damage detection techniques for wind turbine blades: a review. Mechanical Systems and Signal Processing, 141, 106445(2020) [2] LI, W. C., VAZIRI, V., APHALE, S. S., DONG, S. M., and WIERCIGROCH, M. Dynamics and frequency and voltage control of downhole oil pumping system. Mechanical Systems and Signal Processing, 139, 106562(2020) [3] SUN, K., YI, Y., ZHENG, X. B., CUI, L., ZHAO, C. K., LIU, M. Y., and RAO, X. Experimental investigation of semi-submersible platform combined with point-absorber array. Energy Conversion and Management, 245, 114623(2021) [4] ZHANG, Y., WANG, S. Q., FANG, H., HAN, H. W., and XU, Y. H. Design and simulation of a damper with negative stiffness for vibration mitigation from drilling equipment to a semisubmersible platform. Shock and Vibration, 2020, 2605381(2020) [5] WANG, S., LIU, Y., and HUANG, W. Research on solid-liquid coupling dynamics of pipe conveying fluid. Applied Mathematics and Mechanics (English Edition), 19, 1065–1071(1998) https://doi.org/10.1007/BF02459195 [6] LI, Z. Y., ZHOU, S. X., and LI, X. A piezoelectric-electromagnetic hybrid flutter-based wind energy harvester: modeling and nonlinear analysis. International Journal of Non-Linear Mechanics, 144, 105051(2022) [7] NIU, J. C., HOU, J., SHEN, Y. J., and YANG, S. P. Dynamic analysis and vibration control of nonlinear boring bar with fractional-order model of magnetorheological fluid. International Journal of Non-Linear Mechanics, 121, 103459(2020) [8] WADHAM-GAGNON, M., PAÏDOUSSIS, M. P., and SEMLER, C. Dynamics of cantilevered pipes conveying fluid, part 1: nonlinear equations of three-dimensional motion. Journal of Fluids and Structures, 23, 545–567(2007) [9] WANG, J. L., YURCHENKO, D., HU, G. B., ZHAO, L. Y., TANG, L. H., and YANG, Y. W. Perspectives in flow-induced vibration energy harvesting. Applied Physics Letters, 119, 100502(2021) [10] GIACOBBI, D. B., SEMLER, C., and PAÏDOUSSIS, M. P. Dynamics of pipes conveying fluid of axially varying density. Journal of Sound and Vibration, 473, 115202(2020) [11] WANG, Y., WANG, Z., and ZHANG, X. Robust active vibration suppression of single-walled carbon nanotube using adaptive sliding-mode control and electrostatic actuators. Journal of Vibration and Control (2022) https://doi.org/10.1177/107754632110630 [12] LU, Z. Q., CHEN, J., DING, H., and CHEN, L. Q. Energy harvesting of a fluid-conveying piezoelectric pipe. Applied Mathematical Modelling, 107, 165–181(2022) [13] HONG, J., HE, Z. Z., ZHANG, G. Y., and MI, C. W. Size and temperature effects on band gaps in periodic fluid-filled micropipes. Applied Mathematics and Mechanics (English Edition), 42, 1219–1232(2021) https://doi.org/10.1007/s10483-021-2769-8 [14] GAN, C. B., JING, S., YANG, S. X., and LEI, H. Effects of supported angle on stability and dynamical bifurcations of cantilevered pipe conveying fluid. Applied Mathematics and Mechanics (English Edition), 36, 729–746(2015) https://doi.org/10.1007/s10483-015-1946-6 [15] TANG, Y., XU, J. Y., and YANG, T. Z. Natural dynamic characteristics of a circular cylindrical Timoshenko tube made of three-directional functionally graded material. Applied Mathematics and Mechanics (English Edition), 43, 479–496(2022) https://doi.org/10.1007/s10483-022-2839-6 [16] CHEN, W., DAI, H. L., and WANG, L. Three-dimensional dynamical model for cantilevered pipes conveying fluid under large deformation. Journal of Fluids and Structures, 105, 103329(2021) [17] CHEN, W., WANG, L., YAN, Z., and LUO, B. Three-dimensional large-deformation model of hard-magnetic soft beams. Composite Structures, 266, 113822(2021) [18] CHEN, W., ZHOU, K., WANG, L., and YIN, Z. P. Geometrically exact model and dynamics of cantilevered curved pipe conveying fluid. Journal of Sound and Vibration, 534, 117074(2022) [19] ZHOU, K., NI, Q., CHEN, W., DAI, H. L., PENG, Z. R., and WANG, L. New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections. Applied Mathematics and Mechanics (English Edition), 42, 703–720(2021) https://doi.org/10.1007/s10483-021-2729-6 [20] LIANG, F., YANG, X. D., ZHANG, W., and QIAN, Y. J. Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment. Journal of Sound and Vibration, 417, 65–79(2018) [21] CHEN, W., DAI, H. L., JIA, Q. Q., and WANG, L. Geometrically exact equation of motion for large-amplitude oscillation of cantilevered pipe conveying fluid. Nonlinear Dynamics, 98, 2097– 2114(2019) [22] TAN, X., MAO, X. Y., DING, H., and CHEN, L. Q. Vibration around non-trivial equilibrium of a supercritical Timoshenko pipe conveying fluid. Journal of Sound and Vibration, 428, 104–118(2018) [23] LI, M., XU, Q., CHEN, X. C., ZHANG, X. L., and LI, Y. H. Modeling and modal analysis of non-uniform multi-span oil-conveying pipes with elastic foundations and attachments. Applied Mathematical Modelling, 88, 664–675(2020) [24] ROUSSELET, J. and HERRMANN, G. Flutter of articulated pipes at finite amplitude. Journal of Applied Mechanics, 44, 154–158(1977) [25] BUTT, M. F. J., PAÏDOUSSIS, M. P., and NAHON, M. Dynamics of a confined pipe aspirating fluid and concurrently subjected to external axial flow: theoretical investigation. Journal of Sound and Vibration, 509, 116148(2021) [26] TAN, X., DING, H., and CHEN, L. Q. Nonlinear frequencies and forced responses of pipes conveying fluid via a coupled Timoshenko model. Journal of Sound and Vibration, 455, 241–255(2019) [27] ZHAO, F. Q., WANG, Z. M., FENG, Z. Y., and LIU, H. Z. Stability analysis of Maxwell viscoelastic pipes conveying fluid with both ends simply supported. Applied Mathematics and Mechanics (English Edition), 22, 1436–1445(2001) https://doi.org/10.1023/A:1022843012114 [28] TANG, Y., WANG, G., and DING, Q. Nonlinear fractional-order dynamic stability of fluidconveying pipes constituted by the viscoelastic materials with time-dependent velocity. Acta Mechanica Solida Sinica, 145, 1–13(2022) [29] ZHANG, Y. F., LIU, T., and ZHANG, W. Nonlinear resonant responses, mode interactions, and multitime periodic and chaotic oscillations of a cantilevered pipe conveying pulsating fluid under external harmonic force. Complexity, 2020, 1–26(2020) [30] LU, Z. Q., ZHANG, K. K., DING, H., and CHEN, L. Q. Nonlinear vibration effects on the fatigue life of fluid-conveying pipes composed of axially functionally graded materials. Nonlinear Dynamics, 100, 1091–1104(2020) [31] XU, J. and YANG, Q. B. Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid (II). Applied Mathematics and Mechanics (English Edition), 27, 943–951(2006) https://doi.org/10.1007/s10483-006-0710-z [32] CHEN, W., HU, Z. Y., DAI, H., and WANG, L. Extremely large-amplitude oscillation of soft pipes conveying fluid under gravity. Applied Mathematics and Mechanics (English Edition), 41, 1381–1400(2020) https://doi.org/10.1007/s10483-020-2646-6 [33] LYU, X. F., CHEN, F., REN, Q. Q., TANG, Y., DING, Q., and YANG, T. Z. Ultra-thin piezoelectric lattice for vibration suppression in pipe conveying fluid. Acta Mechanica Solida Sinica, 33, 770–780(2020) [34] DING, H., JI, J. C., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mechanical Systems and Signal Processing, 121, 675–688(2019) [35] ZHOU, K., XIONG, F. R., JIANG, N. B., DAI, H. L., YAN, H., WANG, L., and NI, Q. Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dynamics, 95, 1435–1456(2019) [36] YANG, T. Z., LIU, T., TANG, Y., HOU, S., and LV, X. F. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dynamics, 97, 1937–1944(2019) [37] SHOAIB, M., CHEN, Z., and LI, F. M. Vibration attenuation of periodic non-uniform pipes conveying fluid. Journal of Vibration Engineering & Technologies, 9, 2035–2045(2021) [38] CHEN, B. C., CHEN, L. M., DU, B., LIU, H. C., LI, W. G., and FANG, D. N. Novel multifunctional negative stiffness mechanical metamaterial structure: tailored functions of multi-stable and compressive mono-stable. Composites Part B: Engineering, 204, 108501(2021) [39] DING, H. and CHEN, L. Q. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics, 100, 3061–3107(2020) [40] LIU, Y., MOJAHED, A., BERGMAN, L. A., and VAKAKIS, A. F. A new way to introduce geometrically nonlinear stiffness and damping with an application to vibration suppression. Nonlinear Dynamics, 96, 1819–1845(2019) [41] JING, X. J. and VAKAKIS, A. F. Exploring nonlinear benefits in engineering. Mechanical Systems and Signal Processing, 125, 1–3(2019) [42] YANG, T., ZHANG, Y. Q., ZHOU, S. X., FAN, H. W., and ZHANG, X. H. Wideband energy harvesting using nonlinear energy sink with bio-inspired hexagonal skeleton structure. Communications in Nonlinear Science and Numerical Simulation, 111, 106465(2022) [43] GENG, X. F. and DING, H. Two-modal resonance control with an encapsulated nonlinear energy sink. Journal of Sound and Vibration, 520, 116667(2022) [44] WANG, G. X. and DING, H. Mass design of nonlinear energy sinks. Engineering Structures, 250, 113438(2022) [45] ZANG, J., CAO, R. Q., and ZHANG, Y. W. Steady-state response of a viscoelastic beam with asymmetric elastic supports coupled to a lever-type nonlinear energy sink. Nonlinear Dynamics, 105, 1327–1341(2021) [46] GUO, H. L., YANG, T. Z., CHEN, Y. S., and CHEN, L. Q. Singularity analysis on vibration reduction of a nonlinear energy sink system. Mechanical Systems and Signal Processing, 173, 109074(2022) |