[1] IBRAHIM, R. A. Overview of mechanics of pipes conveying fluids—part I: fundamental studies. Journal of Pressure Vessel Technology--Transactions of the ASME, 132(3), 1-32(2010) [2] GENDELMAN, O., MANEVITCH, L. I., VAKAKIS, A. F., and M'CLOSKEY, R. Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying Hamiltonian systems. Journal of Applied Mechanics, 68(1), 34-41(2001) [3] VAKAKIS, A. F. and GENDELMAN, O. Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. Journal of Applied Mechanics, 68(1), 42-48(2001) [4] JIANG, X., MCFARLAND, D. M., BERGMAN, L. A., and VAKAKIS, A. F. Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dynamics, 33, 87-102(2003) [5] SHUDEIFAT, A. L. and MOHAMMAD, A. Highly efficient nonlinear energy sink. Nonlinear Dynamics, 76(4), 1905-1920(2014) [6] SHUDEIFAT, A. L. and MOHAMMAD, A. Asymmetric magnet-based nonlinear energy sink. Journal of Computational and Nonlinear Dynamics, 10(1), 014502(2015) [7] ZHANG, Y. W., ZHANG, Z., CHEN, L. Q., YANG, T. Z., FANG, B., and ZANG, J. Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dynamics, 82(1), 61-71(2015) [8] SUN, Y. H., ZHANG, Y. W., DING, H., and CHEN, L. Q. Nonlinear energy sink for a flywheel system vibration reduction. Journal of Sound and Vibration, 429, 305-324(2018) [9] YANG, T. Z., HOU, S., QIN, Z. H., DING, H., and CHEN, L. Q. A dynamic reconfigurable nonlinear energy sink. Journal of Sound and Vibration, 494, 115629(2021) [10] ZHANG, Y. W., LU, Y. N., ZHANG, W., TENG, Y. Y., YANG, H. X., YANG, T. Z., and CHEN, L. Q. Nonlinear energy sink with inerter. Mechanical Systems and Signal Processing, 125, 52-64(2019) [11] ZHANG, Z., LU, Z. Q., DING, H., and CHEN, L. Q. An inertial nonlinear energy sink. Journal of Sound and Vibration, 450, 199-213(2019) [12] ZHOU, K., XIONG, F. R., JIANG, N. B., DAI, H. L., YAN, H., WANG, L., and NI, Q. Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dynamics, 95(2), 1435-1456(2019) [13] YANG, T. Z., LIU, T., TANG, Y., HOU, S., and LV, X. F. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dynamics, 97, 1937-1944(2019) [14] DUAN, N., WU, Y. H., SUN, X. M., and ZHONG, C. Q. Vibration control of conveying fluid pipe based on inerter enhanced nonlinear energy sink. IEEE Transactions on Circuits and Systems, 68(4), 1610-1623(2019) [15] MAO, X. Y., DING, H., and CHEN, L. Q. Steady-state response of a fluid-conveying pipe with 3:1 internal resonance in supercritical regime. Nonlinear Dynamics, 86(2), 795-809(2016) [16] TAN, X., MAO, X. Y., DING, H., and CHEN, L. Q. Vibration around non-trivial equilibrium of a supercritical Timoshenko pipe conveying fluid. Journal of Sound and Vibration, 428, 104-118(2018) [17] MAO, X. Y., DING, H., and CHEN, L. Q. Bending vibration control of pipes conveying fluids by nonlinear torsional absorbers at the boundary. Science China-Technological Sciences, 64(8), 1690-1704(2021) [18] DING, H., JI, J. C., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mechanical Systems and Signal Processing, 121, 675-688(2019) [19] KREMER, D. and LIU, K. F. A nonlinear energy sink with an energy harvester: harmonically forced responses. Journal of Sound and Vibration, 410, 287-302(2017) [20] FANG, Z. W., ZHANG, Y. W., LI, X., DING, H., and CHEN, L. Q. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. Journal of Sound and Vibration, 391, 35-49(2017) [21] FANG, Z. W., ZHANG, Y. W., LI, X., DING, H., and CHEN, L. Q. Complexification-averaging analysis on a giant magnetostrictive harvester integrated with a nonlinear energy sink. ASME Journal of Vibration and Acoustics, 140, 021009(2018) [22] HAJIDAVALLOO, M. R., COSNER, J., LI, Z. J., TAI, W. C., and SONG, Z. Y. Simultaneous suspension control and energy harvesting through novel design and control of a new nonlinear energy harvesting shock absorber. IEEE Transactions on Vehicular Technology, 71(6), 6073-6087(2022) [23] KARAMA, M., HAMDI, M., and HABBAD, M. Energy harvesting in a nonlinear energy sink absorber using delayed resonators. Nonlinear Dynamics, 105(1), 113-129(2021) [24] LI, X. L., LIU, K. F., and XIONG, L. Y. Development and validation of a piecewise linear nonlinear energy sink for vibration suppression and energy harvesting. Journal of Sound and Vibration, 503, 116104(2021) [25] HOU, S., TENG, Y. Y., and ZHANG, Y. W. Enhanced energy harvesting of a nonlinear energy sink by internal resonance. International Journal of Applied Mechanics, 11(10), 1950100(2019) [26] JIN, Y., HOU, S., and YANG, T. Z. Cascaded essential nonlinearities for enhanced vibration suppression and energy harvesting. Nonlinear Dynamics, 103(2), 1427-1438(2021) [27] LU, Z. Q., CHEN, J., DING, H., and CHEN, L. Q. Energy harvesting of a fluid-conveying piezoelectric pipe. Applied Mathematical Modelling, 107, 165-181(2022) [28] IBRAHIM, R. A. Mechanics of pipes conveying fluids—part II: applications and fluidelastic problems. Journal of Pressure Vessel Technology--Transactions of the ASME, 133(2), 1-30(2011) [29] KHEIRI, M. and PAÏDOUSSIS, M. P. On the use of generalized Hamilton's principle for the derivation of the equation of motion of a pipe conveying fluid. Journal of Fluids and Structures, 50, 18-24(2014) |