Applied Mathematics and Mechanics (English Edition) ›› 2023, Vol. 44 ›› Issue (9): 1423-1456.doi: https://doi.org/10.1007/s10483-023-3023-9
• Articles • Next Articles
Hu DING1,2,3, J. C. JI4
Received:
2023-05-29
Revised:
2023-06-07
Online:
2023-09-01
Published:
2023-08-28
Contact:
Hu DING, E-mail: dinghu3@shu.edu.cn; J. C. JI, E-mail: jin.ji@uts.edu.au
Supported by:
2010 MSC Number:
Hu DING, J. C. JI. Vibration control of fluid-conveying pipes: a state-of-the-art review. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1423-1456.
[1] GAO, P. X., YU, T., ZHANG, Y. L., WANG, J., and ZHAI, J. Y. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: a review. Chinese Journal of Aeronautics, 34(4), 83-114(2021) [2] XU, Y. D., LIU, Z. J., ZHOU, D. M., TIAN, J. J., and ZHU, X. L. Vibration characteristics of pressure pipelines at pumping stations and optimized design for vibration attenuation. Water Supply, 22(1), 990-1003(2022) [3] LIU, E. B., WANG, X. J., ZHAO, W. W., SU, Z. Y., and CHEN, Q. K. Analysis and research on pipeline vibration of a natural gas compressor station and vibration reduction measures. Energy & Fuels, 35(1), 479-492(2021) [4] KWAG, S., EEM, S., KWAK, J., LEE, H., OH, J., and KOO, G. H. Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device. Nuclear Engineering and Technology, 53(8), 2728-2745(2021) [5] XIAO, L. J. and LIU, Q. Analysis of the deep sea mining pipe transverse vibration characteristics based on finite element method. Mathematical Problems in Engineering, 2021, 8216439(2021) [6] IBRAHIM, R. A. Mechanics of pipes conveying fluids—part II: applications and fluidelastic problems. Journal of Pressure Vessel Technology, 133(2), 024001(2011) [7] IBRAHIM, R. A. Overview of mechanics of pipes conveying fluids—part I: fundamental studies. Journal of Pressure Vessel Technology, 132(3), 034001(2010) [8] HAO, M. Y., DING, H., MAO, X. Y., and CHEN, L. Q. Stability and nonlinear response analysis of parametric vibration for elastically constrained pipes conveying pulsating fluid. Acta Mechanica Solida Sinica, 36(2), 230-240(2023) [9] PAÏDOUSSIS, M. P. and ISSID, N. T. Dynamic stability of pipes conveying fluid. Journal of Sound and Vibration, 33(3), 267-294(1974) [10] GUO, Y., ZHU, B., YANG, B., and LI, Y. H. Flow-induced buckling and post-buckling vibration characteristics of composite pipes in thermal environment. Ocean Engineering, 243, 110267(2022) [11] MAO, X. Y., GAO, S. Y., DING, H., and CHEN, L. Q. Static bifurcation and nonlinear vibration of pipes conveying fluid in thermal environment. Ocean Engineering, 278, 114418(2023) [12] AMIRI, A., MASOUMI, A., and TALEBITOOTI, R. Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field. International Journal of Mechanics and Materials in Design, 16(3), 569-588(2020) [13] PAÏDOUSSIS, M. P., ABDELBAKI, A. R., BUTT, M. F. J., TAVALLAEINEJAD, M., MODITIS, K., MISRA, A. K., NAHON, M., and RATIGAN, J. L. Dynamics of a cantilevered pipe subjected to internal and reverse external axial flow: a review. Journal of Fluids and Structures, 106, 103349(2021) [14] CHEHREGHANI, M., SHAABAN, A., MISRA, A. K., and PAÏDOUSSIS, M. P. Dynamics of a hanging fluid-discharging pipe subjected to reverse external flow: an experimental investigation. Journal of Fluids and Structures, 119, 103889(2023) [15] DING, H., JI, J. C., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mechanical Systems and Signal Processing, 121, 675-688(2019) [16] FAN, X., ZHU, C. A., MAO, X. Y., and DING, H. Resonance regulation on a hydraulic pipe via boundary excitations. International Journal of Mechanical Sciences, 252, 108375(2023) [17] KUMAR, P., JANGID, R. S., and REDDY, G. R. Comparative performance of passive devices for piping system under seismic excitation. Nuclear Engineering and Design, 298, 121-134(2016) [18] HONG, K. S. and SHAH, U. H. Vortex-induced vibrations and control of marine risers: a review. Ocean Engineering, 152, 300-315(2018) [19] ZHANG, Y., ZHANG, X., XIONG, F. R., LIU, L., and ZHANG, S. Active vibration control of typical piping system of a nuclear power plant based on fractional PI controller. International Journal of Dynamics and Control, 10(6), 2111-2123(2022) [20] TAN, J., ZHANG, P., FENG, Q., and SONG, G. B. Passive seismic protection of building piping systems: a review. International Journal of Structural Stability and Dynamics, 20(3), 2030001(2020) [21] HU, Y. J. and ZHU, W. Vibration analysis of a fluid-conveying curved pipe with an arbitrary undeformed configuration. Applied Mathematical Modelling, 64, 624-642(2018) [22] YUAN, J. R. and DING, H. An out-of-plane vibration model for in-plane curved pipes conveying fluid. Ocean Engineering, 271, 113747(2023) [23] WEN, H. B., YANG, Y. R., and LI, Y. D. Study on the stability of multi-span U-shaped pipe conveying fluid with complex constraints. International Journal of Pressure Vessels and Piping, 203, 104911(2023) [24] PAÏDOUSSIS, M. P. Some unresolved issues in fluid-structure interactions. Journal of Fluids and Structures, 20(6), 871-890(2005) [25] GAO, Y., LIU, L., FU, S. X., CHAI, S. L., and SHI, C. Nonlinear dynamics of a vertical pipe subjected to a two-phase, solid-liquid internal flow. Applied Mathematical Modelling, 120, 651-666(2023) [26] MISRA, A., BEHDINAN, K., and CLEGHORN, W. L. Self-excited vibration of a control valve due to fluid-structure interaction. Journal of Fluids and Structures, 16(5), 649-665(2002) [27] MAO, X. Y., SHU, S., FAN, X., DING, H., and CHEN, L. Q. An approximate method for pipes conveying fluid with strong boundaries. Journal of Sound and Vibration, 505, 116157(2021) [28] DOU, B., DING, H., MAO, X. Y., FENG, H. R., and CHEN, L. Q. Modeling and parametric studies of retaining clips on pipes. Mechanical Systems and Signal Processing, 186, 109912(2023) [29] YUAN, J. R., FAN, X., SHU, S., DING, H., and CHEN, L. Q. Free vibration analysis and numerical simulation of slightly curved pipe conveying fluid based on Timoshenko beam theory. International Journal of Applied Mechanics, 14(2), 2250014(2022) [30] YUAN, J. R. and DING, H. Dynamic model of curved pipe conveying fluid based on the absolute nodal coordinate formulation. International Journal of Mechanical Sciences, 232, 107625(2022) [31] SHAO, Y. F. and DING, H. Evaluation of gravity effects on the vibration of fluid-conveying pipes. International Journal of Mechanical Sciences, 248, 108230(2023) [32] DENG, T. C., DING, H., and CHEN, L. Q. Critical velocity and supercritical natural frequencies of fluid-conveying pipes with retaining clips. International Journal of Mechanical Sciences, 222, 107254(2022) [33] CAO, Y. M., GUO, X. M., MA, H., GE, H., LI, H., LIN, J. Z., JIA, D., WANG, B., and MA, Y. C. Dynamic modelling and natural characteristics analysis of fluid conveying pipeline with connecting hose. Mechanical Systems and Signal Processing, 193, 110244(2023) [34] FAN, X., ZHU, C. A., MAO, X. Y., and DING, H. Adjacent mode resonance of a hydraulic pipe system consisting of parallel pipes coupled at middle points. Applied Mathematics and Mechanics (English Edition), 44(3), 363-380(2023) https://doi.org/10.1007/s10483-023-2967-6 [35] TANG, Y., YANG, T. Z., and FANG, B. Fractional dynamics of fluid-conveying pipes made of polymer-like materials. Acta Mechanica Solida Sinica, 31(2), 243-258(2018) [36] YE, S. Q., DING, H., WEI, S., JI, J. C., and CHEN, L. Q. Non-trivial equilibriums and natural frequencies of a slightly curved pipe conveying supercritical fluid. Ocean Engineering, 227, 108899(2021) [37] TANG, Y., WANG, T., MA, Z. S., and YANG, T. Z. Magneto-electro-elastic modelling and nonlinear vibration analysis of bi-directional functionally graded beams. Nonlinear Dynamics, 105(3), 2195-2227(2021) [38] ZHOU, K., YI, H. R., DAI, H. L., YAN, H., GUO, Z. L., XIONG, F. R., NI, Q., HAGEDORN, P., and WANG, L. Nonlinear analysis of L-shaped pipe conveying fluid with the aid of absolute nodal coordinate formulation. Nonlinear Dynamics, 107, 391-412(2022) [39] GAO, P. X., ZHANG, Y. L., LIU, X. F., YU, T., and WANG, J. Vibration analysis of aero parallel-pipeline systems based on a novel reduced order modeling method. Journal of Mechanical Science and Technology, 34(8), 3137-3146(2020) [40] MAO, X. Y., SUN, J. Q., DING, H., and CHEN, L. Q. An approximate method for one-dimensional structures with strong nonlinear and nonhomogenous boundary conditions. Journal of Sound and Vibration, 469, 115128(2020) [41] ZHU, B., GUO, Y., ZHAO, T. Y., and LI, X. Nonlinear dynamics of inclined viscoelastic pipes subjected to pulsatile flow and multi-harmonic excitations. Nonlinear Dynamics, 111, 11823-11849(2023) [42] GUO, Y., ZHU, B., and LI, Y. H. Nonlinear dynamics of fluid-conveying composite pipes subjected to time-varying axial tension in sub- and super-critical regimes. Applied Mathematical Modelling, 101, 632-653(2022) [43] ZHANG, B., LI, F. M., CHAI, Y. Y., and CHEN, Y. X. Nonlinear vortex-induced vibrations of fluid-conveying tensioned pipes in super-critical regimes. Journal of Sound and Vibration, 551, 117635(2023) [44] ZHOU, S., YU, T. J., YANG, X. D., and ZHANG, W. Global dynamics of pipes conveying pulsating fluid in the supercritical regime. International Journal of Applied Mechanics, 9(2), 1750029(2017) [45] ZHANG, L. X., HUANG, W., and TIJSSELING, A. S. Review of FSI analysis of fluid-conveying pipes. Journal of Hydrodynamics, 15(3), 366-379(2000) [46] REN, J. T. and JIANG, J. S. Advances and trends on vibration of pipes conveying fluid. Advances in Mechanics, 33(3), 313-324(2003) [47] XU, J. and YANG, Q. B. Recent development on models and nonlinear dynamics of pipes conveying fluid. Advances in Mechanics, 34(2), 182-194(2004) [48] QUAN, L. X., KONG, X. D., YU, B., and BAI, H. H. Research status and trends on fluid-structure interaction vibration mechanism and control of hydraulic pipeline. Journal of Mechanical Engineering, 51(18), 175-183(2015) [49] PAÏDOUSSIS, M. P. Dynamics of cylindrical structures in axial flow: a review. Journal of Fluids and Structures, 107, 103374(2021) [50] JI, J. C. and ZHANG, N. Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber. Journal of Sound and Vibration, 329(11), 2044-2056(2010) [51] KUNIEDA, M., CHIBA, T., and KOBAYASHI, H. Positive use of damping devices for piping systems -- some experiences and new proposals. Nuclear Engineering and Design, 104(2), 107-120(1987) [52] MANI, Y. and SENTHILKUMAR, M. Shape memory alloy-based adaptive-passive dynamic vibration absorber for vibration control in piping applications. Journal of Vibration and Control, 21(9), 1838-1847(2015) [53] WANG, W. X., DALTON, D., HUA, X. G., WANG, X. Y., CHEN, Z. Q., and SONG, G. B. Experimental study on vibration control of a submerged pipeline model by eddy current tuned mass damper. Applied Sciences, 7(10), 987(2017) [54] YU, D. L., WEN, J. H., ZHAO, H. G., LIU, Y. Z., and WEN, X. S. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. Journal of Sound and Vibration, 318(1-2), 193-205(2008) [55] NATEGHI, A., SANGIULIANO, L., CLAEYS, C., DECKERS, E., PLUYMERS, B., and DESMET, W. Design and experimental validation of a metamaterial solution for improved noise and vibration behavior of pipes. Journal of Sound and Vibration, 455, 96-117(2019) [56] WU, J. H., ZHU, H. Z., SUN, Y. D., YIN, Z. Y., and SU, M. Z. Reduction of flexural vibration of a fluid-filled pipe with attached vibration absorbers. International Journal of Pressure Vessels and Piping, 194, 104525(2021) [57] EL-BORGI, S., ALRUMAIHI, A., RAJENDRAN, P., YAZBECK, R., FERNANDES, R., BOYD, J. G., and LAGOUDAS, D. C. Model updating of a scaled piping system and vibration attenuation via locally resonant bandgap formation. International Journal of Mechanical Sciences, 194, 106211(2021) [58] SONG, G. B., ZHANG, P., LI, L.Y., SINGLA, M., PATIL, D., LI, H. N., and MO, Y. L. Vibration control of a pipeline structure using pounding tuned mass damper. Journal of Engineering Mechanics, 142(6), 04016031(2016) [59] JIANG, J. W., ZHANG, P., PATIL, D., LI, H. N., and SONG, G. B. Experimental studies on the effectiveness and robustness of a pounding tuned mass damper for vibration suppression of a submerged cylindrical pipe. Structural Control & Health Monitoring, 24(12), e2027(2017) [60] MLYNARCZYK, P., CYKLIS, P., and RYNCARZ, T. Innovative hybrid device for the simultaneous damping of pressure pulsations and vibrations in positive displacement compressor manifolds. International Journal of Refrigeration, 132, 109-118(2021) [61] JI, J. C. Design of a nonlinear vibration absorber using three-to-one internal resonances. Mechanical Systems and Signal Processing, 42(1), 236-246(2014) [62] WANG, G. X., DING, H., and CHEN, L. Q. Performance evaluation and design criterion of a nonlinear energy sink. Mechanical Systems and Signal Processing, 169, 108770(2022) [63] MACIEL, V. S. F., KHEIRI, M., and FRANZINI, G. R. Passive suppression of flow-induced vibrations of a cantilevered pipe discharging fluid using non-linear vibration absorbers. International Journal of Non-Linear Mechanics, 144, 104053(2022) [64] DING, H. and CHEN, L. Q. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics, 100(4), 3061-3107(2020) [65] GENG, X. F. and DING, H. Two-modal resonance control with an encapsulated nonlinear energy sink. Journal of Sound and Vibration, 520, 116667(2022) [66] CHEN, H. Y., MAO, X. Y., DING, H., and CHEN, L. Q. Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks. Mechanical Systems and Signal Processing, 135, 106383(2020) [67] YANG, T. Z., YANG, X. D., LI, Y. H., and FANG, B. Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. Journal of Vibration and Control, 20(9), 1293-1300(2014) [68] MAMAGHANI, A. E., KHADEM, S. E., and BAB, S. Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dynamics, 86(3), 1761-1795(2016) [69] ZHAO, X. Y., ZHANG, Y. W., DING, H., and CHEN, L. Q. Vibration suppression of a nonlinear fluid-conveying pipe under harmonic foundation displacement excitation via nonlinear energy sink. International Journal of Applied Mechanics, 10(9), 1850096(2018) [70] ZHOU, K., XIONG, F. R., JIANG, N. B., DAI, H. L., YAN, H., WANG, L., and NI, Q. Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dynamics, 95(2), 1435-1456(2019) [71] LIU, Z. Y., TAN, X., LIU, X. B., CHEN, P. G., YI, K., YANG, T. Z., NI, Q., and WANG, L. Dynamical stability of cantilevered pipe conveying fluid with inerter-based dynamic vibration absorber. Computer Modeling in Engineering & Sciences, 125(2), 495-514(2020) [72] YANG, T. Z., LIU, T., TANG, Y., HOU, S., and LV, X. F. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dynamics, 97(3), 1937-1944(2019) [73] KHAZAEE, M., KHADEM, S. E., MOSLEMI, A., and ABDOLLAHI, A. Vibration mitigation of a pipe conveying fluid with a passive geometrically nonlinear absorber: a tuning optimal design. Communications in Nonlinear Science and Numerical Simulation, 91, 105439(2020) [74] KHAZAEE, M., KHADEM, S. E., MOSLEMI, A., and ABDOLLAHI, A. A comparative study on optimization of multiple essentially nonlinear isolators attached to a pipe conveying fluid. Mechanical Systems and Signal Processing, 141, 106442(2020) [75] DUAN, N., LIN, S., WU, Y. H., SUN, X. M., and ZHONG, C. Q. Stability analysis of a pipe conveying fluid with a nonlinear energy sink. Science China Information Sciences, 64(5), 152201(2021) [76] DUAN, N., WU, Y. H., SUN, X. M., and ZHONG, C. Q. Vibration control of conveying fluid pipe based on inerter enhanced nonlinear energy sink. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(4), 1610-1623(2021) [77] DUAN, N., WU, Y. H., SUN, X. M., and ZHONG, C. Q. Lyapunov-based stability analysis for fluid conveying system with parallel nonlinear energy sinks. IEEE Transactions on Systems Man Cybernetics-Systems, 52(11), 6921-6936(2022) [78] YANG, L. F., LIU, L. Q., LUO, C., YU, Y. J., and CHEN, Y. Q. The parameter design of nonlinear energy sink installed on the jacket pipe by using the nonlinear dynamical theory. Applied Sciences, 12(14), 7272(2022) [79] MIRHASHEMI, S., SAEIDIHA, M., and AHMADI, H. Dynamics of a harmonically excited nonlinear pipe conveying fluid equipped with a local nonlinear energy sink. Communications in Nonlinear Science and Numerical Simulation, 118, 107035(2023) [80] PHILIP, R., SANTHOSH, B., BALARAM, B., and AWREJCEWICZ, J. Vibration control in fluid conveying pipes using NES with nonlinear damping. Mechanical Systems and Signal Processing, 194, 110250(2023) [81] TANG, Y., WANG, G., YANG, T. Z., and DING, Q. Nonlinear dynamics of three-directional functional graded pipes conveying fluid with the integration of piezoelectric attachment and nonlinear energy sink. Nonlinear Dynamics, 111(3), 2415-2442(2023) [82] LU, Z. Q., ZHANG, K. K., DING, H., and CHEN, L. Q. Internal resonance and stress distribution of pipes conveying fluid in supercritical regime. International Journal of Mechanical Sciences, 186, 105900(2020) [83] MAO, X. Y., DING, H., and CHEN, L. Q. Bending vibration control of pipes conveying fluids by nonlinear torsional absorbers at the boundary. Science China Technological Sciences, 64(8), 1690-1704(2021) [84] CHIBA, T. and KOBAYASHI, H. Response characteristics of piping system supported by visco-elastic and elasto-plastic dampers. Journal of Pressure Vessel Technology, 112(1), 34-38(1990) [85] PARULEKAR, Y. M., REDDY, G. R., VAZE, K. K., and MUTHUMANI, K. Passive control of seismic response of piping systems. Journal of Pressure Vessel Technology, 128(3), 364-369(2005) [86] BAKRE, S. V., JANGID, R. S., and REDDY, G. R. Optimum X-plate dampers for seismic response control of piping systems. International Journal of Pressure Vessels and Piping, 83(9), 672-685(2006) [87] BAKRE, S. V., JANGID, R. S., and REDDY, G. R. Response of piping system on friction support to bi-directional excitation. Nuclear Engineering and Design, 237(2), 124-136(2007) [88] CHANG, S., SUN, W. P., CHO, S. G., and KIM, D. Vibration control of nuclear power plant piping system using Stockbridge damper under earthquakes. Science and Technology of Nuclear Installations, 2016, 5014093(2016) [89] CHO, S. G., FURUYA, O., and KURABAYASHI, H. Enhancement of seismic resilience of piping systems in nuclear power plants using steel coil damper. Nuclear Engineering and Design, 350, 147-157(2019) [90] HONG, R. D., NIE, S. L., JI, H., NIE, S., and GONG, F. Evaluation of flow-induced vibration suppression performances of magneto-rheological damping pipe clamp using PID algorithm. Journal of Intelligent Material Systems and Structures, 34(11), 1330-1340(2023) [91] BI, K. M. and HAO, H. Numerical simulation on the effectiveness of using viscoelastic materials to mitigate seismic induced vibrations of above-ground pipelines. Engineering Structures, 123, 1-14(2016) [92] SABAHI, M. A., SAIDI, A. R., and KHODABAKHSH, R. An analytical solution for nonlinear vibration of functionally graded porous micropipes conveying fluid in damping medium. Ocean Engineering, 245, 110482(2022) [93] LI, L. Z., NIE, L., REN, Y. R., and JIN, Q. D. On the impact process and stress field of functionally graded graphene reinforced composite pipes with a viscoelastic interlayer. Journal of Vibration and Control, 29(13-14), 3369-3383(2023) [94] YANO, D., ISHIKAWA, S., TANAKA, K., and KIJIMOTO, S. Vibration analysis of viscoelastic damping material attached to a cylindrical pipe by added mass and added damping. Journal of Sound and Vibration, 454, 14-31(2019) [95] ISHIKAWA, S., TANAKA, K., YANO, D., and KIJIMOTO, S. Design of a disc-shaped viscoelastic damping material attached to a cylindrical pipe as a dynamic absorber or Houde damper. Journal of Sound and Vibration, 475, 115272(2020) [96] MA, H. W., SUN, W., WANG, D., DU, D. X., LIU, X. F., and LIN, J. Z. Finite element modeling of straight pipeline with partially attached viscoelastic damping patch based on variable thickness laminated element. Composite Structures, 314, 116944(2023) [97] SEMERCIGIL, S. E., TURAN, O. F., and LU, S. Employing fluid flow in a cantilever pipe for vibration control. Journal of Sound and Vibration, 205(1), 103-111(1997) [98] LONG, R. H., JR. Experimental and theoretical study of transverse vibration of a tube containing flowing fluid. Journal of Applied Mechanics, 22(1), 65-68(1955) [99] GUO, Z. L., NI, Q., WANG, L., ZHOU, K., and MENG, X. K. Influence of dry friction on the dynamics of cantilevered pipes conveying fluid. Applied Sciences, 12(2), 724(2022) [100] AMBE, Y., YAMAUCHI, Y., KONYO, M., TADAKUMA, K., and TADOKORO, S. Stabilized controller for jet actuated cantilevered pipe using damping effect of an internal flowing fluid. IEEE Access, 10, 5238-5249(2022) [101] WANG, B. S., WANG, H. S., HE, Z. Z., LIU, D. Y., and PAN, P. Test and analysis of multi-cavity particle damper for vertical vibration control of pipeline structures. Engineering Structures, 281, 115744(2023) [102] IGUSA, T., SINHA, R., KOKUBO, E., FURUKAWA, S. I., and KAWAHATA, J. I. Analysis of piping with hysteretic supports using response spectra. Nuclear Engineering and Design, 143(2), 187-199(1993) [103] DING, H., DOWELL, E. H., and CHEN, L. Q. Transmissibility of bending vibration of an elastic beam. Journal of Vibration and Acoustics, 140(3), 031007(2018) [104] MAO, X. Y., DING, H., and CHEN, L. Q. Vibration of flexible structures under nonlinear boundary conditions. Journal of Applied Mechanics, 84(11), 111006(2017) [105] DING, H., LU, Z. Q., and CHEN, L. Q. Nonlinear isolation of transverse vibration of pre-pressure beams. Journal of Sound and Vibration, 442, 738-751(2019) [106] ZHANG, Z., GAO, Z. T., FANG, B., and ZHANG, Y. W. Vibration suppression of a geometrically nonlinear beam with boundary inertial nonlinear energy sinks. Nonlinear Dynamics, 109(3), 1259-1275(2022) [107] XU, Z. D., YANG, Y., and MIAO, A. N. Dynamic analysis and parameter optimization of pipelines with multidimensional vibration isolation and mitigation device. Journal of Pipeline Systems Engineering and Practice, 12(1), 04020058(2021) [108] LIN, Y. H. and CHU, C. L. Active flutter control of a cantilever tube conveying fluid using piezoelectric actuators. Journal of Sound and Vibration, 196(1), 97-105(1996) [109] LIN, Y. H. and CHU, C. L. Active modal control of Timoshenko pipes conveying fluid. Journal of the Chinese Institute of Engineers, 24(1), 65-74(2001) [110] LIN, Y. H., HUANG, R. C., and CHU, C. L. Optimal modal vibration suppression of a fluid-conveying pipe with a divergent mode. Journal of Sound and Vibration, 271(3-5), 577-597(2004) [111] LIN, Y. H., CHEN, J. L., CHU, C. L., and TSAI, Y. K. Numerical stability analysis for independent modal vibration suppression of a fluid-conveying pipe using a piezoelectric inertia actuator. Journal of Marine Science and Technology, 21(5), 545-550(2013) [112] TSAI, Y. K. and LIN, Y. H. Adaptive modal vibration control of a fluid-conveying cantilever pipe. Journal of Fluids and Structures, 11(5), 535-547(1997) [113] LIN, Y. H. and TSAI, Y. K. Non-linear active vibration control of a cantilever pipe conveying fluid. Journal of Sound and Vibration, 202(4), 477-490(1997) [114] VARIYART, W. and BRENNAN, M. J. An actuator for the $n=2$ circumferential mode of a pipe. Journal of Sound and Vibration, 268(2), 305-321(2003) [115] VARIYART, W. and BRENNAN, M. J. Active control of the $n=2$ axial propagating wave in an infinite in vacuo pipe. Smart Materials and Structures, 13(1), 126-133(2004) [116] SHEN, H. J., WEN, J. H., YU, D. L., ASGARI, M., and WEN, X. S. Control of sound and vibration of fluid-filled cylindrical shells via periodic design and active control. Journal of Sound and Vibration, 332(18), 4193-4209(2013) [117] GUAN, C. B., JIAO, Z. X., WU, S., SHANG, Y. X., and ZHENG, F. G. Active control of fluid pressure pulsation in hydraulic pipe system by bilateral-overflow of piezoelectric direct-drive slide valve. Journal of Dynamic Systems Measurement and Control, 136(3), 031025(2014) [118] KHAJEHPOUR, S. and AZADI, V. Vibration suppression of a rotating flexible cantilever pipe conveying fluid using piezoelectric layers. Latin American Journal of Solids and Structures, 12(6), 1042-1060(2015) [119] JIN, M. Motion limiting nonlinear dynamics and frequency characteristics of pipes reinforced with carbon nanotube agglomerations coupled with piezoelectric actuator. Mechanics Based Design of Structures and Machines (2022) https://doi.org/10.1080/15397734.2022.2044850 [120] LYU, X. F., CHEN, F., REN, Q. Q., TANG, Y., DING, Q., and YANG, T. Z. Ultra-thin piezoelectric lattice for vibration suppression in pipe conveying fluid. Acta Mechanica Solida Sinica, 33(6), 770-780(2020) [121] BRENNAN, M. J., ELLIOT, S. J., and PINNINGTON, R. J. A non-intrusive fluid-wave actuator and sensor pair for the active control of fluid-borne vibrations in a pipe. Smart Materials & Structures, 5(3), 281-296(1996) [122] CHEN, W., WANG, L., and PENG, Z. R. A magnetic control method for large-deformation vibration of cantilevered pipe conveying fluid. Nonlinear Dynamics, 105(2), 1459-1481(2021) [123] DEHROUYEH-SEMNANI, A. M. Nonlinear geometrically exact dynamics of fluid-conveying cantilevered hard magnetic soft pipe with uniform and nonuniform magnetizations. Mechanical Systems and Signal Processing, 188, 110016(2023) [124] SUGIYAMA, Y., KATAYAMA, T., KANKI, E., NISHINO, K., and AKESSON, B. Stabilization of cantilevered flexible structures by means of an internal flowing fluid. Journal of Fluids and Structures, 10(6), 653-661(1996) [125] HORIUCHI, T., INOUE, M., KONNO, T., and NAMITA, Y. Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber. Earthquake Engineering & Structural Dynamics, 28(10), 1121-1141(1999) [126] YIGIT, F. Active control of flow-induced vibrations via feedback decoupling. Journal of Vibration and Control, 14(4), 591-608(2008) [127] BAO, R. D. An active control method for chaotic motion of fluid conveying pipe under harmonic excitation of supports. Applied Mechanics and Materials, 120, 537-546(2012) [128] SHAIK, N. H., SHARMA, A. K., and BHATTACHARYA, B. Effect of shape memory alloy actuation on parametric instability in pipes conveying pulsating fluid. Journal of Vibration Engineering & Technologies (2022) https://doi.org/10.1007/s42417-022-00726-2 [129] LI, J. T., DENG, H., and JIANG, W. J. Dynamic response and vibration suppression of a cantilevered pipe conveying fluid under periodic excitation. Journal of Vibration and Control, 25(11), 1695-1705(2019) [130] KUMAR, P., JANGID, R. S., and REDDY, G. R. Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation. Nuclear Engineering and Design, 258, 130-143(2013) [131] KAVIANIPOUR, O. Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper. Coupled Systems Mechanics, 6(2), 175-187(2017) [132] PISARSKI, D., KONOWROCKI, R., and SZMIDT, T. Dynamics and optimal control of an electromagnetically actuated cantilever pipe conveying fluid. Journal of Sound and Vibration, 432, 420-436(2018) [133] SZMIDT, T., PISARSKI, D., and KONOWROCKI, R. Semi-active stabilisation of a pipe conveying fluid using eddy-current dampers: state-feedback control design, experimental validation. Meccanica, 54(6), 761-777(2019) [134] YE, K., JI, J. C., and HAN, S. Semi-active noise control for a hermetic digital scroll compressor. Journal of Low Frequency Noise, Vibration and Active Control, 39(4), 1204-1215(2020) [135] BISWAS, S. K. and AHMED, N. U. Optimal control of flow-induced vibration of pipeline. Dynamics and Control, 11(2), 187-201(2001) [136] ZANG, Z. P. and GAO, F. P. Steady current induced vibration of near-bed piggyback pipelines: configuration effects on VIV suppression. Applied Ocean Research, 46, 62-69(2014) [137] WANG, S. Y., YUE, Q. J., and ZHANG, D. Y. Use of an irregular cone to reduce ice-induced vibration of a vertical riser pipe. Journal of Cold Regions Engineering, 33(1), 06018003(2019) [138] LIU, X. D., SUN, W., and GAO, Z. H. Optimization of hoop layouts for reducing vibration amplitude of pipeline system using the semi-analytical model and genetic algorithm. IEEE Access, 8, 224394-224408(2020) [139] BAMIDELE, O. E., HASSAN, M., and AHMED, W. H. Flow induced vibration of two-phase flow passing through orifices under slug pattern conditions. Journal of Fluids and Structures, 101, 103209(2021) [140] LIU, E. B., LIAN, D. P., ZHENG, H., SU, Z. Y., and CHEN, Q. K. Research on abnormal vibration and vibration reduction measures of a natural gas compressor station: a case study of the JYG compressor station. Energy & Fuels, 36(2), 897-909(2022) [141] KOO, G. H. and PARK, Y. S. Vibration reduction by using periodic supports in a piping system. Journal of Sound and Vibration, 210(1), 53-68(1998) [142] WEI, Z. D., LI, B. R., DU, J. M., and YANG, G. Research on the vibration band gaps of isolators applied to ship hydraulic pipe supports based on the theory of phononic crystals. European Physical Journal Applied Physics, 74(1), 10902(2016) [143] YU, D. L., WEN, J. H., ZHAO, H. G., LIU, Y. Z., and WEN, X. S. Flexural vibration band gap in a periodic fluid-conveying pipe system based on the Timoshenko beam theory. Journal of Vibration and Acoustics, 133(1), 014502(2011) [144] IQBAL, M., KUMAR, A., JAYA, M. M., and BURSI, O. S. Vibration control of periodically supported pipes employing optimally designed dampers. International Journal of Mechanical Sciences, 234, 107684(2022) [145] LI, X., LI, W. H., SHI, J., LI, Q., and WANG, S. P. Pipelines vibration analysis and control based on clamps' locations optimization of multi-pump. Chinese Journal of Aeronautics, 35(6), 352-366(2022) [146] WU, J. H., SUN, Y. D., SU, M. Z., and ZHU, H. Z. Fluid-structure interaction and band gap analysis of periodic composite liquid-filled pipe. Composite Structures, 304, 116444(2023) [147] WU, J. H., ZHU, H. Z., SUN, Y. D., SU, M. Z., and YIN, Z. Y. Torsional wave propagation and vibration reducing of phononic crystal pipe with periodic torsional support. Journal of Pressure Vessel Technology, 145(1), 011402(2023) [148] ZHANG, L., ZHANG, T., OUYANG, H. J., LI, T. Y., and YOU, M. Natural frequency assignment of a pipeline through structural modification in layout optimization of elastic supports. Journal of Sound and Vibration, 561, 117702(2023) [149] LIANG, F., CHEN, Y., GONG, J. J., and QIAN, Y. Vibration self-suppression of spinning fluid-conveying pipes composed of periodic composites. International Journal of Mechanical Sciences, 220, 107150(2022) |
[1] | H. M. FEIZABAD, M. H. YAS. Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fibers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 543-562. |
[2] | Kefan XU, Muqing NIU, Yewei ZHANG, Liqun CHEN. An active high-static-low-dynamic-stiffness vibration isolator with adjustable buckling beams: theory and experiment [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 425-440. |
[3] | Hongyan CHEN, Youcheng ZENG, Hu DING, Siukai LAI, Liqun CHEN. Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 389-406. |
[4] | Xiaodong GUO, Zhu SU, Lifeng WANG. Dynamic characteristics of multi-span spinning beams with elastic constraints under an axial compressive force [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 295-310. |
[5] | Runqing CAO, Zilong GUO, Wei CHEN, Huliang DAI, Lin WANG. Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 261-276. |
[6] | Yong WANG, Peili WANG, Haodong MENG, Liqun CHEN. Dynamic performance and parameter optimization of a half-vehicle system coupled with an inerter-based X-structure nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 85-110. |
[7] | Yang JIN, Tianzhi YANG. Enhanced vibration suppression and energy harvesting in fluid-conveying pipes [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1487-1496. |
[8] | Qiao ZHANG, Yuxin SUN. Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson's ratio [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1457-1486. |
[9] | Xueqian FANG, Qilin HE, Hongwei MA, Changsong ZHU. Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1351-1366. |
[10] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[11] | Bo DOU, Hu DING, Xiaoye MAO, Sha WEI, Liqun CHEN. Dynamic modeling of fluid-conveying pipes restrained by a retaining clip [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1225-1240. |
[12] | Jian ZANG, Ronghuan XIAO, Yewei ZHANG, Liqun CHEN. A novel way for vibration control of FGM fluid-conveying pipes via NiTiNOL-steel wire rope [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 877-896. |
[13] | Ying MENG, Xiaoye MAO, Hu DING, Liqun CHEN. Nonlinear vibrations of a composite circular plate with a rigid body [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 857-876. |
[14] | Hai QING, Huidiao SONG. Nonlocal stress gradient formulation for damping vibration analysis of viscoelastic microbeam in thermal environment [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 773-786. |
[15] | Shihua ZHOU, Dongsheng ZHANG, Bowen HOU, Zhaohui REN. Vibration isolation performance analysis of a bilateral supported bio-inspired anti-vibration control system [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 759-772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||