Applied Mathematics and Mechanics (English Edition) ›› 2023, Vol. 44 ›› Issue (9): 1457-1486.doi: https://doi.org/10.1007/s10483-023-3024-6
• Articles • Previous Articles Next Articles
Qiao ZHANG, Yuxin SUN
Received:
2023-03-08
Revised:
2023-06-05
Published:
2023-08-28
Contact:
Yuxin SUN, E-mail: yxsun@buaa.edu.cn
Supported by:
2010 MSC Number:
Qiao ZHANG, Yuxin SUN. Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson's ratio. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1457-1486.
[1] DONG, Y. H., ZHANG, Y. F., and LI, Y. H. An analytical formulation for postbuckling and buckling vibration of micro-scale laminated composite beams considering hygrothermal effect. Composite Structures, 170, 11-25(2017) [2] BOUAZZA, M., BENSEDDIQ, N., and ZENKOUR, A. M. Thermal buckling analysis of laminated composite beams using hyperbolic refined shear deformation theory. Journal of Thermal Stresses, 42(3), 332-340(2018) [3] GARG, A. and CHALAK, H. D. Analysis of non-skew and skew laminated composite and sandwich plates under hygro-thermo-mechanical conditions including transverse stress variations. Journal of Sandwich Structures & Materials, 23(8), 3471-3494(2020) [4] GARG, A., BELARBI, M. O., CHALAK, H. D., and CHAKRABARTI, A. A review of the analysis of sandwich FGM structures. Composite Structures, 258, 113427(2021) [5] TANG, H. and DAI, H. L. Dynamic instability zone analysis of laminated piezoelectric cylindrical shell with delamination under hygrothermal effects. Applied Mathematical Modelling, 99, 27-40(2021) [6] ZHANG, C., EYVAZIAN, A., ALKHEDHER, M., ALWETAISHI, M., and AMEER-AHAMMAD, N. Modified couple stress theory application to analyze mechanical buckling behavior of three-layer rectangular microplates with honeycomb core and piezoelectric face sheets. Composite Structures, 292, 115582(2022) [7] AL-MUKAHAL, F. H. H. and SOBHY, M. Wave propagation and free vibration of FG graphene platelets sandwich curved beam with auxetic core resting on viscoelastic foundation via DQM. Archives of Civil and Mechanical Engineering, 22, 12(2021) [8] ALLAM, M. N. M., RADWAN, A. F., and SOBHY, M. Hygrothermal deformation of spinning FG graphene sandwich cylindrical shells having an auxetic core. Engineering Structures, 251, 113433(2022) [9] KARIMIASL, M. and ALIBEIGLOO, A. Nonlinear free and forced vibration analysis of sandwich cylindrical panel with auxetic core and GPLRC facing sheets in hygrothermal environment. Thin-Walled Structures, 175, 109164(2022) [10] LI, Y. and TANG, Y. Application of Galerkin iterative technique to nonlinear bending response of three-directional functionally graded slender beams subjected to hygro-thermal loads. Composite Structures, 290, 115481(2022) [11] ZAITOUN, M. W., CHIKH, A., TOUNSI, A., AL-OSTA, M. A., SHARIF, A., AL-DULAIJAN, S. U., and AL-ZAHRANI, M. M. Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment. Thin-Walled Structures, 170, 108549(2022) [12] WANG, Y. and ZHANG, W. On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams. Composite Structures, 296, 115880(2022) [13] ZHAO, B., LONG, C., PENG, X., CHEN, J., LIU, T., ZHANG, Z., and LAI, A. Size effect and geometrically nonlinear effect on thermal post-buckling of micro-beams: a new theoretical analysis. Continuum Mechanics and Thermodynamics, 34, 519-532(2022) [14] ATTIA, M. A. and MOHAMED, S. A. Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory. Engineering with Computers, 38(1), 525-554(2022) [15] LAKES, R. Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude. Applied Physics Letters, 90, 221905(2007) [16] LIM, T. C. Mechanics of Metamaterials with Negative Parameters, Springer, Singapore, 351-424(2020) [17] RAMINHOS, J. S., BORGES, J. P., and VELHINHO, A. Development of polymeric anepectic meshes: auxetic metamaterials with negative thermal expansion. Smart Materials and Structures, 28(4), 045010(2019) [18] CARDOSO, J. O., BORGES, J. P., and VELHINHO, A. Structural metamaterials with negative mechanical/thermomechanical indices: a review. Progress in Natural Science: Materials International, 31(6), 801-808(2021) [19] CHEN, J., XU, W., WEI, Z., WEI, K., and YANG, X. Stiffness characteristics for a series of lightweight mechanical metamaterials with programmable thermal expansion. International Journal of Mechanical Sciences, 202-203, 106527(2021) [20] WEI, K., XIAO, X., CHEN, J., WU, Y., LI, M., and WANG, Z. Additively manufactured bi-material metamaterial to program a wide range of thermal expansion. Materials & Design, 198, 109343(2021) [21] XU, W., XIAO, X., CHEN, J., HAN, Z., and WEI, K. Program multi-directional thermal expansion in a series of bending dominated mechanical metamaterials. Thin-Walled Structures, 174, 109147(2022) [22] LIM, T. C. Adjustable positive and negative hygrothermal expansion metamaterial inspired by the Maltese cross. Royal Society Open Science, 8, 210593(2021) [23] LIM, T. C. An auxetic metamaterial with tunable positive to negative hygrothermal expansion by means of counter-rotating crosses. Physica Status Solidi B, 258(8), 2100137(2021) [24] LIM, T. C. Auxetic and negative thermal expansion structure based on interconnected array of rings and sliding rods. Physica Status Solidi B, 254(12), 1600775(2017) [25] SAXENA, K. K., DAS, R., and CALIUS, E. P. Three decades of auxetics research—materials with negative Poisson's ratio: a review. Advanced Engineering Materials, 18(11), 1847-1870(2016) [26] EVANS, K. E. and ALDERSON, A. Auxetic materials: functional materials and structures from lateral thinking. Advanced Materials, 12(9), 617-628(2000) [27] PRAWOTO, Y. Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson's ratio. Computational Materials Science, 58, 140-153(2012) [28] KARIMIASL, M. and ALIBEIGLOO, A. Vibration characteristics of composite sandwich cylindrical panel with double-V auxetic core subjected to the aerohygrothermal environment. Waves in Random and Complex Media, 2, 1-24(2021) [29] SOBHY, M. Analytical buckling temperature prediction of FG piezoelectric sandwich plates with lightweight core. Materials Research Express, 8(9), 095704(2021) [30] SOBHY, M. and ALAKEL-ABAZID, M. Mechanical and thermal buckling of FG-GPLs sandwich plates with negative Poisson's ratio honeycomb core on an elastic substrate. European Physical Journal Plus, 137, 93(2022) [31] JIANG, W., ZHOU, J., LIU, J., ZHANG, M., and HUANG, W. Free vibration behaviours of composite sandwich plates with reentrant honeycomb cores. Applied Mathematical Modelling, 116, 547-568(2023) [32] WANG, H., YU, H., WANG, X., ZHOU, H., LEI, H., CHEN, M., and GUO, X. Load-bearing sandwiched metastructure with zero thermal-induced warping and high resonant frequency: mechanical designs, theoretical predictions, and experimental demonstrations. Mechanics of Materials, 177, 104531(2023) [33] TOROPOVA, M. M. and STEEVES, C. A. Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures. Acta Astronautica, 113, 132-141(2015) [34] LIU, K. J., LIU, H. T., and LI, J. Thermal expansion and bandgap properties of bi-material triangle re-entrant honeycomb with adjustable Poisson's ratio. International Journal of Mechanical Sciences, 242, 108015(2023) [35] WEI, K., PENG, Y., QU, Z., ZHOU, H., PEI, Y., and FANG, D. Lightweight composite lattice cylindrical shells with novel character of tailorable thermal expansion. International Journal of Mechanical Sciences, 137, 77-85(2018) [36] YU, H., LIANG, B., ZHAO, Z., LIU, P., LEI, H., SONG, W., CHEN, M., and GUO, X. Metamaterials with a controllable thermal-mechanical stability: mechanical designs, theoretical predictions and experimental demonstrations. Composites Science and Technology, 207, 108694(2021) [37] YU, B., XU, Z., MU, R., WANG, A., and ZHAO, H. Design of large-scale space lattice structure with near-zero thermal expansion metamaterials. Aerospace, 10, 294(2023) [38] ALAKEL-ABAZID, M. 2D magnetic field effect on the thermal buckling of metal foam nanoplates reinforced with FG-GPLs lying on Pasternak foundation in humid environment. European Physical Journal Plus, 135, 910(2020) [39] KARIMIASL, M., EBRAHIMI, F., and MAHESH, V. Postbuckling analysis of piezoelectric multiscale sandwich composite doubly curved porous shallow shells via homotopy perturbation method. Engineering with Computers, 37(1), 561-577(2021) [40] GUPTA, A., VERMA, S., and GHOSH, A. Static and dynamic NURBS-based isogeometric analysis of composite plates under hygrothermal environment. Composite Structures, 284, 115083(2022) [41] FEI, B. The Buckling Analysis Based on 3-D Elastic Solid Structure and Its Implementation with Boundary Face Method (in Chinese), M.Sc. dessertation, Hunan University, Changsha, 18-22(2012) [42] XING, Y. and LIU, B. High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. International Journal for Numerical Methods in Engineering, 80(13), 1718-1742(2009) [43] XING, Y., LIU, B. O., and LIU, G. A differential quadrature finite element method. International Journal of Applied Mechanics, 2(1), 207-227(2010) [44] CHANG, W. H. Calculation of the natural vibration frequency of rectangular thin plates with four edges supported. Shanxi Architechture, 38(5), 63-65(2012) [45] BAO, S. Y. and CAO, J. R. Elastic buckling analysis of rectangular plates with arbitrary elastic boundary conditions. Chinese Journal of Ship Research, 15(6), 162-169(2020) [46] BEDFORD, A. and LIECHTI, K. M. Mechanics of Materials, 2nd ed., Springer, Cham, Switzerland, 729-781(2020) |
[1] | H. M. FEIZABAD, M. H. YAS. Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fibers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 543-562. |
[2] | Kefan XU, Muqing NIU, Yewei ZHANG, Liqun CHEN. An active high-static-low-dynamic-stiffness vibration isolator with adjustable buckling beams: theory and experiment [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 425-440. |
[3] | Hongyan CHEN, Youcheng ZENG, Hu DING, Siukai LAI, Liqun CHEN. Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 389-406. |
[4] | Lei WANG, Yingge LIU, Juxi HU, Weimin CHEN, Bing HAN. A non-probabilistic reliability topology optimization method based on aggregation function and matrix multiplication considering buckling response constraints [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 321-336. |
[5] | Xiaodong GUO, Zhu SU, Lifeng WANG. Dynamic characteristics of multi-span spinning beams with elastic constraints under an axial compressive force [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 295-310. |
[6] | Runqing CAO, Zilong GUO, Wei CHEN, Huliang DAI, Lin WANG. Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 261-276. |
[7] | Yang JIN, Tianzhi YANG. Enhanced vibration suppression and energy harvesting in fluid-conveying pipes [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1487-1496. |
[8] | Hu DING, J. C. JI. Vibration control of fluid-conveying pipes: a state-of-the-art review [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1423-1456. |
[9] | Xueqian FANG, Qilin HE, Hongwei MA, Changsong ZHU. Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1351-1366. |
[10] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[11] | Jian ZANG, Ronghuan XIAO, Yewei ZHANG, Liqun CHEN. A novel way for vibration control of FGM fluid-conveying pipes via NiTiNOL-steel wire rope [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 877-896. |
[12] | Ying MENG, Xiaoye MAO, Hu DING, Liqun CHEN. Nonlinear vibrations of a composite circular plate with a rigid body [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 857-876. |
[13] | Hai QING, Huidiao SONG. Nonlocal stress gradient formulation for damping vibration analysis of viscoelastic microbeam in thermal environment [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 773-786. |
[14] | Shihua ZHOU, Dongsheng ZHANG, Bowen HOU, Zhaohui REN. Vibration isolation performance analysis of a bilateral supported bio-inspired anti-vibration control system [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 759-772. |
[15] | Jian'en CHEN, Jianling LI, Minghui YAO, Jun LIU, Jianhua ZHANG, Min SUN. Nonreciprocity of energy transfer in a nonlinear asymmetric oscillator system with various vibration states [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 727-744. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||