[1] ZHANG, B. L., HAN, Q. L., and ZHANG, X. M. Recent advances in vibration control of offshore platforms. Nonlinear Dynamics, 89(2), 755-771 (2017) [2] SUN, X. T., WANG. F., and XU, J. Analysis, design and experiment of continuous isolation structure with local quasi-zero-stiffness property by magnetic interaction. International Journal of Non-Linear Mechanics, 116, 289-301 (2019) [3] JIANG, G. Q., WANG, Y., LI, F. M., and JING, X. J. An integrated nonlinear passive vibration control system and its vibration reduction properties. Journal of Sound and Vibration, 509, 116231 (2021) [4] LU, Z., WANG, Z. X., ZHOU, Y., and LU, X. L. Nonlinear dissipative devices in structural vibration control: a review. Journal of Sound and Vibration, 423, 18-49 (2018) [5] VAKAKIS, A. F. Inducing passive nonlinear energy sinks in vibrating systems. Journal of Vibration and Acoustics—Transactions of the ASME, 123(3), 324-332 (2001) [6] VAKAKIS, A. F., GENDELMAN, O. V., BERGMAN, L. A., MCFARLAND, D. M., KERSCHEN, G., and LEE, Y. S. Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems II, Springer Science & Business Media, New York, 162-227 (2008) [7] GENDELMAN, O., MANEVITCH, L. I., VAKAKIS, A. F., and M'ClOSKEY, R. Energy pumping in nonlinear mechanical oscillators: part I, dynamics of the underlying Hamiltonian systems. Journal of Applied Mechanics, 68(1), 34-41 (2001) [8] VAKAKIS, A. F. and GENDELMAN, O. Energy pumping in nonlinear mechanical oscillators: part II, resonance capture. Journal of Applied Mechanics—Transactions of the ASME, 68(1), 42-48 (2001) [9] GOURDON, E., ALEXANDER, N. A., TAYLOR, C. A., LAMARQUE, C. H., and PERNOT, S. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. Journal of Sound and Vibration, 300(3-5), 522-551 (2007) [10] GENDELMAN, O. V., GORLOV, D. V., MANEVITCH, L. I., and MUSIENKO, A. I. Dynamics of coupled linear and essentially nonlinear oscillators with substantially different masses. Journal of Sound and Vibration, 286(1-2), 1-19 (2005) [11] GENDELMAN, O. V. and BAR, T. Bifurcations of self-excitation regimes in a van der Pol oscillator with a nonlinear energy sink. Physica D: Nonlinear Phenomena, 239(3-4), 220-229 (2010) [12] GENDELMAN, O. V. and ALLONI, A. Dynamics of forced system with vibro-impact energy sink. Journal of Sound and Vibration, 358, 301-314 (2015) [13] GRINBERG, I., LANTON, V., and GENDELMAN, O. V. Response regimes in linear oscillator with 2DOF nonlinear energy sink under periodic forcing. Nonlinear Dynamics, 69(4), 1889-1902 (2012) [14] TAGHIPOUR, J. and DARDEL, M. Steady state dynamics and robustness of a harmonically excited essentially nonlinear oscillator coupled with a two-DOF nonlinear energy sink. Mechanical Systems and Signal Processing, 62-63, 164-182 (2015) [15] LEE, Y. S., VAKAKIS, A. F., BERGMAN, L. A., MCFARLAND, D. M., and KERSCHEN, G. Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks. AIAA Journal, 46(6), 1371-1394 (2008) [16] VAURIGAUD, B., SAVADKOOHI, A. T., and LAMARQUE, C. H. Targeted energy transfer with parallel nonlinear energy sinks, part I: design theory and numerical results. Nonlinear Dynamics, 66(4), 763-780 (2011) [17] ZHANG, Y. W., ZHANG, Z., CHEN, L. Q., YANG, T. Z., FANG, B., and ZANG, J. Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dynamics, 82(1-2), 61-71 (2015) [18] CHEN, J. E., HE, W., ZHANG, W., YAO, M. H., LIU, J., and SUN, M. Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dynamics, 91(2), 885-904 (2018) [19] FANG, X., WEN, J. H., YIN, J. F., and YU, D. L. Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dynamics, 87(4), 2677-2695 (2017) [20] YAO, H. L., WANG, Y. W., CAO, Y. B., and WEN, B. C. Multi-stable nonlinear energy sink for rotor system. International Journal of Non-Linear Mechanics, 118, 103273 (2020) [21] GENDELMAN, O. V. Analytic treatment of a system with a vibro-impact nonlinear energy sink. Journal of Sound and Vibration, 331(21), 4599-4608 (2012) [22] GOURC, E., MICHON, G., SEGUY, S., and BERLIOZ, A. Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments. Journal of Vibration and Acoustics—Transactions of the ASME, 137(3), 031008 (2015) [23] LI, T., GOURC, E., SEGUY, S., and BERLIOZ, A. Dynamics of two vibro-impact nonlinear energy sinks in parallel under periodic and transient excitations. International Journal of Non-Linear Mechanics, 90, 100-110 (2017) [24] GENG, X. F., DING, H., MAO, X. Y., and CHEN, L. Q. Nonlinear energy sink with limited vibration amplitude. Mechanical Systems and Signal Processing, 156, 107625 (2021) [25] GENG, X. F., DING, H., MAO, X. Y., and CHEN, L. Q. A ground-limited nonlinear energy sink. Acta Mechanica Sinica, 38, 521558 (2022) [26] GENG, X. F., DING, H., JING, X. J., MAO, X. Y., WEI, K. X., and CHEN, L. Q. Dynamic design of a magnetic-enhanced nonlinear energy sink. Mechanical Systems and Signal Processing, 185, 109813 (2023) [27] CHEN, J. E., SUN, M., HU, W. H., ZHANG, J. H., and WEI, Z. C. Performance of non-smooth nonlinear energy sink with descending stiffness. Nonlinear Dynamics, 100(1), 255-267 (2020) [28] SAEED, A. S., AL-SHUDEIFAT, M. A., and VAKAKIS, A. F. Rotary-oscillatory nonlinear energy sink of robust performance. International Journal of Non-Linear Mechanics, 117, 103249 (2019) [29] TSIATAS, G. C. and CHARALAMPAKIS, A. E. A new hysteretic nonlinear energy sink (HNES). Communications in Nonlinear Science and Numerical Simulation, 60, 1-11 (2018) [30] DING, H. and SHAO, Y. F. NES cell. Applied Mathematics and Mechanics (English Edition), 43(12), 1793-1804 (2022) https://doi.org/10.1007/s10483-022-2934-6 [31] ZHANG, Y. W., HU, K. F., ZANG, J., NI, Z. Y., ZHU, Y. P., and CHEN, L. Q. Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions. Applied Mathematics and Mechanics (English Edition), 40(12), 1791-1804 (2019) https://doi.org/10.1007/s10483-019-2548-9 [32] ZANG, J., YUAN, T. C., LU, Z. Q., ZHANG, Y. W., DING, H., and CHEN, L. Q. A lever-type nonlinear energy sink. Journal of Sound and Vibration, 437, 119-134 (2018) [33] ZHANG, Z., LU, Z. Q., DING, H., and CHEN, L. Q. An inertial nonlinear energy sink. Journal of Sound and Vibration, 450, 199-213 (2019) [34] CHOWDHURY, S., BANERJEE, A., and ADHIKARI, S. Optimal negative stiffness inertial-amplifier-base-isolators: exact closed-form expressions. International Journal of Mechanical Sciences, 218, 107044 (2022) [35] ZEIGHAMI, F., PALERMO, A., and MARZANI, A. Inertial amplified resonators for tunable metasurfaces. Meccanica, 54(13), 2053-2065 (2019) [36] MCFARLAND, D. M., BERGMAN, L. A., and VAKAKIS, A. F. Experimental study of non-linear energy pumping occurring at a single fast frequency. International Journal of Non-Linear Mechanics, 40(6), 891-899 (2005) [37] CHEN, L. Q., LI, X., LU, Z. Q., ZHANG, Y. W., and DING, H. Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically. Journal of Sound and Vibration, 45, 99-119 (2019) [38] LU, Z. Q., DING, H., and CHEN, L. Q. Resonance response interaction without internal resonance in vibratory energy harvesting. Mechanical Systems and Signal Processing, 121, 767-776 (2019) [39] ZENG, Y. C., DING, H., DU, R. H., and CHEN, L. Q. A suspension system with quasi-zero stiffness characteristics and inerter nonlinear energy sink. Journal of Vibration and Control, 28(1-2), 143-158 (2020) [40] CHEN, J. E., ZHANG, W., LIU, J., and HU, W. H. Vibration absorption of parallel-coupled nonlinear energy sink under shock and harmonic excitations. Applied Mathematics and Mechanics (English Edition), 42(8), 1135-1154 (2021) https://doi.org/10.1007/s10483-021-2757-6 [41] KANI, M., KHADEM, S. E., PASHAEI, M. H., and DARDEL, M. Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dynamics, 83, 1-12 (2016) |