[1] DEN HARTOG, J. P. Mechanical Vibrations, Dover Publications, Inc., New York (1985) [2] XIAO, J., ZHANG, Q., LIU, H., HUANG, T., and SHAN, X. Research on vibration suppression by a multi-point flexible following support head in thin-walled parts mirror milling. The International Journal of Advanced Manufacturing Technology, 106, 3335-3344 (2020) [3] MORADI, H., VOSSOUGHI, G., BEHZAD, M., and MOVAHHEDY, M. R. Vibration absorber design to suppress regenerative chatter in nonlinear milling process:application for machining of cantilever plates. Applied Mathematical Modelling, 39(2), 600-620 (2015) [4] ZHANG, J. H., GUO, P., LIN, J. W., and WANG, K. N. A mathematical model for coupled vibration system of road vehicle and coupling effect analysis. Applied Mathematical Modelling, 40(2), 1199-1217 (2016) [5] ZHAO, P. C., ZHANG, K., ZHAO, C., and DENG, Z. C. Multi-resonator coupled metamaterials for broadband vibration suppression. Applied Mathematics and Mechanics (English Edition), 42(1), 53-64 (2021) https://doi.org/10.1007/s10483-021-2684-8 [6] XIE, F. and ALY, A. M. Structural control and vibration issues in wind turbines:a review. Engineering Structures, 210, 110087 (2020) [7] YANG, F., SEDAGHATI, R., and ESMAILZADEH, E. Vibration suppression of structures using tuned mass damper technology:a state-of-the-art review. Journal of Vibration and Control, 28(7-8), 812-836 (2022) [8] BATOU, A. and ADHIKARI, S. Optimal parameters of viscoelastic tuned-mass dampers. Journal of Sound and Vibration, 445, 17-28 (2019) [9] CASALOTTI, A., EI-BORGI, S., and LACARBONARA, W. Metamaterial beam with embedded nonlinear vibration absorbers. International Journal of Non-Linear Mechanics, 98, 32-42 (2018) [10] GENG, X. F., DING, H., WEI, K. X., and CHEN, L. Q. Suppression of multiple modal resonances of a cantilever beam by an impact damper. Applied Mathematics and Mechanics (English Edition), 41(3), 383-400 (2020) https://doi.org/10.1007/s10483-020-2588-9 [11] WEBER, F. Semi-active vibration absorber based on real-time controlled MR damper. Mechanical Systems and Signal Processing, 46(2), 272-288 (2014) [12] ZHANG, B. L., HAN, Q. L., and ZHANG, X. M. Recent advances in vibration control of offshore platforms. Nonlinear Dynamics, 89(2), 755-771 (2017) [13] CHEN, J. N., ZHANG, W., LIU, J., and HU, W. H. Vibration absorption of parallel-coupled nonlinear energy sink under shock and harmonic excitations. Applied Mathematics and Mechanics (English Edition), 42(8), 1135-1154 (2021) https://doi.org/10.1007/s10483-021-2757-6 [14] BROWNE, F., REES, B., CHIU, G. T. C., and JAIN, N. Iterative learning control withtime-delay compensation:an application to twin-roll strip casting. IEEE Transactions on Control Systems Technology, 29(1), 140-149 (2021) [15] MAZENC, F., MALISOFF, M., and BHOGARAJU, I. N. S. Sequential predictors for delay compensation for discrete time systems with time-varying delays. Automatica, 122, 109188 (2020) [16] PYRAGAS, K. Control of chaos via an unstable delayed feedback controller. Physical Review Letters, 86(11), 2265-2268 (2001) [17] LIAO, X. X. and CHEN, G. R. Chaos synchronization of general Lur'e systems via time-delay feedback control. International Journal of Bifurcation and Chaos, 13(1), 207-213 (2003) [18] WANG, Q. and WANG, Z. H. Optimal feedback gains of a delayed proportional-derivative (PD) control for balancing an inverted pendulum. Acta Mechanica Sinica, 33(3), 635-645 (2017) [19] XU, Q., STEPAN, G., and WANG, Z. H. Balancing a wheeled inverted pendulum with a single accelerometer in the presence of time delay. Journal of Vibration and Control, 23(4), 604-614 (2017) [20] LIU, K., CHEN, L. X., and CAI, G. P. Experimental study of active control for a flexible beam with nonlinear hysteresis and time delay. Journal of Vibration and Control, 22(3), 722-735 (2016) [21] ZHANG, T., LI, H. G., and CAI, G. P. Time delay stability analysis for vibration suppression of a smart cantilever beam with hysteresis property. Journal of Low Frequency Noise Vibration and Active Control, 40(2), 898-915 (2021) [22] RUSINEK, R., MITURA, A., and WARMINSKI, J. Time delay Duffing's systems:chaos and chatter control. Meccanica, 49(8), 1869-1877 (2014) [23] LEHOTZKY, D., INSPERGER, T., and STEPAN, G. Numerical methods for the stability of time-periodic hybrid time-delay systems with applications. Applied Mathematical Modelling, 57, 142-162 (2018) [24] SUN, X. T. and XU, J. Vibration control of nonlinear absorber-isolator-combined structure with time-delayed coupling. International Journal of Non-Linear Mechanics, 83, 48-58 (2016) [25] SUN, X. T., ZHANG, S., and XU, J. Parameter design of a multi-delayed isolator with asymmetrical nonlinearity. International Journal of Mechanical Sciences, 138, 398-408 (2018) [26] SUN, X. T., WANG, F., and XU, J. Dynamics and realization of a feedback-controlled nonlinear isolator with variable time delay. Journal of Vibration and Acoustics-Transactions of the ASME, 141(2), 021005 (2019) [27] EL-SAYED, A. T. and BAUOMY, H. S. Vibration control of helicopter blade flapping via time-delay absorber. Meccanica, 49(3), 587-600 (2014) [28] SAEED, N. A. and EL-GANAINI, W. A. Utilizing time-delays to quench the nonlinear vibrations of a two-degree-of-freedom system. Meccanica, 52(11-12), 2969-2990 (2017) [29] YANG, T. and CAO, Q. J. Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations. Journal of Statistical Mechanics-Theory and Experiment, 2017, 043202 (2017) [30] YANG, T. and CAO, Q. J. Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities. Mechanical Systems and Signal Processing, 103, 216-235 (2018) [31] OLGAC, N. and HOLMHANSEN, B. T. A novel active vibration absorption technique-delayed resonator. Journal of Sound and Vibration, 176(1), 93-104 (1994) [32] OLGAC, N., ELMALI, H., and VIJAYAN, S. Introduction to the dual frequency fixed delayed resonator. Journal of Sound and Vibration, 189(3), 355-367 (1996) [33] JALILI, N. and OLGAC, N. Multiple delayed resonator vibration absorbers for multi-degree-of-freedom mechanical structures. Journal of Sound and Vibration, 223(4), 567-585 (1999) [34] HOSEK, M., OLGAC, N., and ELMALI, H. The centrifugal delayed resonator as a tunable torsional vibration absorber for multi-degree-of-freedom systems. Journal of Vibration and Control, 5(2), 299-322 (1999) [35] HOSEK, M., ELMALI, H., and OLGAC, N. A tunable torsional vibration absorber:the centrifugal delayed resonator. Journal of Sound and Vibration, 205(2), 151-165 (1997) [36] SUN, Y. X. and XU, J. Experiments and analysis for a controlled mechanical absorber considering delay effect. Journal of Sound and Vibration, 339, 25-37 (2015) [37] XU, J. and SUN, Y. X. Experimental studies on active control of a dynamic system via a time-delayed absorber. Acta Mechanica Sinica, 31(2), 229-247 (2015) [38] WANG, F. and XU, J. Parameter design for a vibration absorber with time-delayed feedback control. Acta Mechanica Sinica, 35(3), 624-640 (2019) [39] WANG, F., SUN, X. T., MENG, H., and XU, J. Time-delayed feedback control design and its application for vibration absorption. IEEE Transactions on Industrial Electronics, 68(9), 8593-8602 (2021) [40] WANG, F., SUN, X. T., MENG, H., and XU, J. Tunable broadband low-frequency band gap of multiple-layer metastructure induced by time-delayed vibration absorbers. Nonlinear Dynamics, 107(3), 1903-1918 (2022) [41] ZHANG, X. X., XU, J., and JI, J. C. Modelling and tuning for a time-delayed vibration absorber with friction. Journal of Sound and Vibration, 424, 137-157 (2018) [42] ZHANG, X. X., XU, J., and FENG, Z. C. Nonlinear equivalent model and its identification for a delayed absorber with magnetic action using distorted measurement. Nonlinear Dynamics, 88(2), 937-954 (2017) [43] MENG, H., SUN, X. T., XU, J., and WANG, F. The generalization of equal-peak method for delay-coupled nonlinear system. Physica D-Nonlinear Phenomena, 403, 132340 (2020) [44] MENG, H., SUN, X. T., XU, J., and WANG, F. Establishment of the equal-peak principle for a multiple-DOF nonlinear system with multiple time-delayed vibration absorbers. Nonlinear Dynamics, 104(1), 241-266 (2021) [45] JI, J. C. and ZHANG, N. Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber. Journal of Sound and Vibration, 329(11), 2044-2056 (2010) [46] JI, J. C. and ZHANG, N. Suppression of super-harmonic resonance response using a linear vibration absorber. Mechanics Research Communications, 38(6), 411-416 (2011) [47] QIAN, Y. J., CUI, Q. D., YANG, X. D., and ZHANG, W. Manipulating transverse waves through 1D metamaterial by longitudinal vibrations. International Journal of Mechanical Sciences, 168, 105296 (2020) [48] WANG, Q., LI, J. Q., ZHANG, Y., XUE, Y., and LI, F. M. Bandgap properties in metamaterial sandwich plate with periodically embedded plate-type resonators. Mechanical Systems and Signal Processing, 151, 107375 (2021) [49] FAN, J. X., SONG, B., ZHANG, L., WANG, X. B., ZHANG, Z., WEI, S. S., XIANG, X., ZHU, X. F., and SHI, Y. S. Structural design and additive manufacturing of multifunctional metamaterials with low-frequency sound absorption and load-bearing performances. International Journal of Mechanical Sciences, 238, 107848 (2023) [50] GAO, Y. Q. and WANG, L. F. Active multifunctional composite metamaterials with negative effective mass density and negative effective modulus. Composite Structures, 291, 115586 (2022) [51] ZHOU, J. X., WANG, K., XU, D. L., and OUYANG, H. J. Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. Journal of Applied Physics, 121(4), 044902 (2017) [52] WANG, Z. W., ZHANG, Q., ZHANG, K., and HU, G. K. Tunable digital metamaterial for broadband vibration isolation at low frequency. Advanced Materials, 28(44), 9857-9861 (2016) [53] BANERJEE, A. Non-dimensional analysis of the elastic beam having periodic linear spring mass resonators. Meccanica, 55(5), 1181-1191 (2020) [54] YAN, G. W., YAO, S., LI, Y. L., and ZHOU, W. X. Topological optimization of thin elastic metamaterial plates for ultrawide flexural vibration bandgaps. International Journal of Mechanical Sciences, 242, 108014 (2023) [55] YI, K. J., OUISSE, M., SADOULET-REBOUL, E., and MATTEN, G. Active metamaterials with broadband controllable stiffness for tunable band gaps and non-reciprocal wave propagation. Smart Materials and Structures, 28(6), 065025 (2019) [56] HE, Z. H., WANG, Y. Z., and WANG, Y. S. Active feedback control of effective mass density and sound transmission on elastic wave metamaterials. International Journal of Mechanical Sciences, 195, 106221 (2021) [57] SIROTA, L., SABSOVICH, D., LAHINI, Y., ILAN, R., and SHOKEF, Y. Real-time steering of curved sound beams in a feedback-based topological acoustic metamaterial. Mechanical Systems and Signal Processing, 153, 107479 (2021) [58] CHEN, L. X. and CAI, G. P. Design method of multiple time-delay controller for active structural vibration control. Applied Mathematics and Mechanics (English Edition), 30(11), 1405-1414 (2009) https://doi.org/10.1007/s10483-009-1106-z [59] GAO, Y. Q. and WANG, L. F. Broad bandgap active metamaterials with optimal time-delayed control. International Journal of Mechanical Sciences, 254, 108449 (2023) |