[1] HE, C., LAI, H. S., HE, B., YU, S. Y., XU, X., LU, M. H., and CHEN, Y. F. Acoustic analogues of three-dimensional topological insulators. Nature Communications, 11, 2318(2020) [2] MEZA, L. R., ZELHOFER, A. J., CLARKE, N., MATEOS, A. J., KOCHMANN, D. M., and GREER, J. R. Resilient 3D hierarchical architected metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 112, 11502-11507(2015) [3] TSAKMAKIDIS, K. L., RESHEF, O., ALMPANIS, E., ZOUROS, G. P., MOHAMMADI, E., SAADAT, D., SOHRABI, F., FAHIMIKASHANI, N., ETEZADI, D., and BOYD, R. W. Ultrabroadband 3D invisibility with fast-light cloaks. Nature Communications, 10, 4859(2019) [4] JIANG, T., LI, C., HE, Q., and PENG, Z. K. Randomized resonant metamaterials for single-sensor identification of elastic vibrations. Nature Communications, 11, 2353(2020) [5] ZHANG, K., GE, M. H., ZHAO, C., DENG, Z. C., and XU, X. J. Free vibration of nonlocal Timoshenko beams made of functionally graded materials by symplectic method. Composites Part B:Engineering, 156, 174-184(2019) [6] OH, J. H., KWON, Y. E., LEE, H. J., and KIM, Y. Y. Elastic metamaterials for independent realization of negativity in density and stiffness. Scientific Reports, 6, 23630(2016) [7] JENSEN, J. S. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. Journal of Sound and Vibration, 266, 1053-1078(2003) [8] FANG, N. X., XI, D., XU, J., AMBATI, M., SRITURAVANICH, W., SUN, C., and ZHANG, X. Ultrasonic metamaterials with negative modulus. Nature Materials, 5, 452-456(2006) [9] JABERZADEH, M., LI, B., and TAN, K. T. Wave propagation in an elastic metamaterial with anisotropic effective mass density. Wave Motion, 89, 131-141(2019) [10] YI, K., OUISSE, M., SADOULETREBOUL, E., and MATTEN, G. Active metamaterials with broadband controllable stiffness for tunable band gaps and non-reciprocal wave propagation. Smart Materials and Structures, 28, 065025(2019) [11] LEPIDI, M. and BACIGALUPO, A. Wave propagation properties of one-dimensional acoustic metamaterials with nonlinear diatomic microstructure. Nonlinear Dynamics, 98, 2711-2735(2019) [12] HOU, X., DENG, Z., and ZHOU, J. Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures. Applied Mathematics and Mechanics (English Edition), 31(11), 1371-1382(2010) https://doi.org/10.1007/s10483-010-1369-7 [13] BRÛLÉ, S., ENOCH, S., and GUENNEAU, S. Emergence of seismic metamaterials:current state and future perspectives. Physics Letters A, 384, 126034(2020) [14] ZHANG, Q., CHEN, Y., ZHANG, K., and HU, G. Programmable elastic valley Hall insulator with tunable interface propagation routes. Extreme Mechanics Letters, 28, 76-80(2019) [15] DU, Z., CHEN, H., and HUANG, G. Optimal quantum valley Hall insulators by rationally engineering Berry curvature and band structure. Journal of the Mechanics and Physics of Solids, 135, 103784(2020) [16] ZHANG, K., SU, Y., ZHAO, P., and DENG, Z. Tunable wave propagation in octa-chiral lattices with local resonators. Composite Structures, 220, 114-126(2019) [17] ZHANG, K., ZHAO, P., HONG, F., YU, Y., and DENG, Z. On the directional wave propagation in the tetrachiral and hexachiral lattices with local resonators. Smart Materials and Structures, 29, 015017(2020) [18] ZHU, R., LIU, X. N., HU, G. K., SUN, C. T., and HUANG, G. L. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nature Communications, 5, 5510(2014) [19] CHEN, Y., LIU, X., and HU, G. Influences of imperfectness and inner constraints on an acoustic cloak with unideal pentamode materials. Journal of Sound and Vibration, 458, 62-73(2019) [20] AN, X., FAN, H., and ZHANG, C. Elastic wave and vibration bandgaps in planar square metamaterial-based lattice structures. Journal of Sound and Vibration, 475, 115292(2020) [21] ZHOU, W., SU, Y., MUHAMMAD, CHEN, W., and LIM, C. W. Voltage-controlled quantum valley Hall effect in dielectric membrane-type acoustic metamaterials. International Journal of Mechanical Sciences, 172, 105368(2020) [22] YE, M., GAO, L., and LI, H. A design framework for gradually stiffer mechanical metamaterial induced by negative Poisson's ratio property. Materials and Design, 192, 108751(2020) [23] REN, T., LIU, C., LI, F., and ZHANG, C. Active tuning of the vibration band gap characteristics of periodic laminated composite metamaterial beams. Journal of Intelligent Material Systems and Structures, 31, 843-859(2020) [24] SHI, Z., WANG, Y., and ZHANG, C. Band structure calculation of scalar waves in two-dimensional phononic crystals based on generalized multipole technique. Applied Mathematics and Mechanics (English Edition), 34(9), 1123-1144(2013) https://doi.org/10.1007/s10483-013-1732-6 [25] ZHAO, P., ZHANG, K., and DENG, Z. Elastic wave propagation in lattice metamaterials with Koch fractal. Acta Mechanica Solida Sinica, 33, 600-611(2020) [26] BAE, M. H. and OH, J. H. Amplitude-induced bandgap:new type of bandgap for nonlinear elastic metamaterials. Journal of the Mechanics and Physics of Solids, 139, 103930(2020) [27] XU, X., BARNHART, M. V., FANG, X., WEN, J., CHEN, Y., and HUANG, G. A nonlinear dissipative elastic metamaterial for broadband wave mitigation. International Journal of Mechanical Sciences, 164, 105159(2019) [28] BUKHARI, M. and BARRY, O. Simultaneous energy harvesting and vibration control in a nonlinear metastructure:a spectro-spatial analysis. Journal of Sound and Vibration, 473, 115215(2020) [29] ZHANG, K., ZHAO, P., ZHAO, C., HONG, F., and DENG, Z. Study on the mechanism of band gap and directional wave propagation of the auxetic chiral lattices. Composite Structures, 238, 111952(2020) [30] SUN, F. and XIAO, L. Bandgap characteristics and seismic applications of inerter-in-lattice metamaterials. Journal of Engineering Mechanics, 145, 04019067(2019) [31] LI, F., ZHANG, C., and LIU, C. Active tuning of vibration and wave propagation in elastic beams with periodically placed piezoelectric actuator/sensor pairs. Journal of Sound and Vibration, 393, 14-29(2017) [32] QIAN, D. Electro-mechanical coupling wave propagating in a locally resonant piezoelectric/elastic phononic crystal nanobeam with surface effects. Applied Mathematics and Mechanics (English Edition), 41(3), 425-438(2020) https://doi.org/10.1007/s10483-020-2586-5 [33] SUGINO, C., RUZZENE, M., and ERTURK, A. An analytical framework for locally resonant piezoelectric metamaterial plates. International Journal of Solids and Structures, 182-183, 281-294(2020) [34] ZHANG, K., ZHAO, C., LUO, J., MA, Y., and DENG, Z. Analysis of temperature-dependent wave propagation for programmable lattices. International Journal of Mechanical Sciences, 171, 105372(2020) [35] SCHAEFFER, M. and RUZZENE, M. Wave propagation in multistable magneto-elastic lattices. International Journal of Solids and Structures, 56-57, 78-95(2015) [36] GUO, J., CAO, J., XIAO, Y., SHEN, H., and WEN, J. Interplay of local resonances and Bragg band gaps in acoustic waveguides with periodic detuned resonators. Physics Letters A, 384, 126253(2020) [37] LIU, Z., ZHANG, X., MAO, Y., ZHU, Y., YANG, Z., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289, 1734-1736(2000) [38] CAMPANA, M. A., OUISSE, M., SADOULET-REBOUL, E., RUZZENE, M., NEILD, S., and SCARPA, F. Impact of non-linear resonators in periodic structures using a perturbation approach. Mechanical Systems and Signal Processing, 135, 106408(2020) [39] WANG, J., ZHOU, W., HUANG, Y., LYU, C., CHEN, W., and ZHU, W. Controllable wave propagation in a weakly nonlinear monoatomic lattice chain with nonlocal interaction and active control. Applied Mathematics and Mechanics (English Edition), 39(8), 1059-1070(2018) https://doi.org/10.1007/s10483-018-2360-6 [40] CAI, C., ZHOU, J., WU, L., WANG, K., XU, D., and OUYANG, H. Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Composite Structures, 236, 111862(2020) [41] SILVEIRA, M. and VASCONCELLOS, D. P. Optimisation of axial vibration attenuation of periodic structure with nonlinear stiffness without addition of mass. Journal of Vibration and Acoustics, 142, 1-28(2020) [42] WANG, K., ZHOU, J., WANG, Q., OUYANG, H., and XU, D. Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms:design and experimental validation. Applied Physics Letters, 114, 251902(2019) [43] ZHOU, J., WANG, K., XU, D., and OUYANG, H. Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. Journal of Applied Physics, 121, 044902(2017) [44] MUHAMMAD, S., WANG, S., LI, F., and ZHANG, C. Bandgap enhancement of periodic nonuniform metamaterial beams with inertial amplification mechanisms. Journal of Vibration and Control, 26, 1309-1318(2020) [45] CVETICANIN, L., ZUKOVIC, M., and CVETICANIN, D. On the elastic metamaterial with negative effective mass. Journal of Sound and Vibration, 436, 295-309(2018) [46] HUANG, G. L. and SUN, C. T. Band gaps in a multiresonator acoustic metamaterial. Journal of Vibration and Acoustics, 132, 031003(2010) [47] TIAN, Y., WU, J. H., LI, H., GU, C., YANG, Z., ZHAO, Z., and LU, K. Elastic wave propagation in the elastic metamaterials containing parallel multi-resonators. Journal of Physics D:Applied Physics, 52, 395301(2019) [48] GAO, Y. and WANG, L. Ultrawide coupled bandgap in hybrid periodic system with multiple resonators. Journal of Applied Physics, 127, 204901(2020) [49] HU, G., TANG, L., XU, J., LAN, C., and DAS, R. Metamaterial with local resonators coupled by negative stiffness springs for enhanced vibration suppression. Journal of Applied Mechanics, 86, 081009(2019) [50] XU, X., BARNHART, M. V., LI, X., CHEN, Y., and HUANG, G. Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators. Journal of Sound and Vibration, 442, 237-248(2019) [51] TRAINITI, G., RIMOLI, J. J., and RUZZENE, M. Wave propagation in undulated structural lattices. International Journal of Solids and Structures, 97, 431-444(2016) |