[1] SINGH, G., RAJNI, and MARWAHA, A. A review of metamaterials and its applications. International Journal of Engineering Trends and Technology, 19, 305-310(2015) [2] VALIPOUR, A., KARGOZARFARD, M. H., RAKHSHI, M., YAGHOOTIAN, A., and SEDIGHI, H. M. Metamaterials and their applications:an overview. Proceedings of the Institution of Mechanical Engineers, Part L:Journal of Materials:Design and Applications, 1-40(2021) [3] ZHOU, X. M., LIU, X. N., and HU, G. K. Elastic metamaterials with local resonances:an overview. Theoretical and Applied Mechanics Letters, 2, 041001(2012) [4] FOK, L., AMBATI, M., and ZHANG, X. Acoustic metamaterials. MRS Bulletin, 33, 931-934(2008) [5] KHAJEHTOURIAN, R. and HUSSEIN, M. I. Dispersion characteristics of a nonlinear elastic metamaterial. AIP Advances, 4, 124308(2014) [6] KULKARNI, P. P. and MANIMALA, J. M. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials. Journal of Applied Physics, 119, 245101(2016) [7] CHANG, I. L., LIANG, Z. X., KAO, H. W., CHANG, S. H., and YANG, C. Y. The wave attenuation mechanism of the periodic local resonant metamaterial. Journal of Sound and Vibration, 412, 349-359(2018) [8] TIAN, Y. J., WU, J. H., LI, H. L., GU, C. S., YANG, Z. R., ZHAO, Z. T., and LU, K. Elastic wave propagation in the elastic metamaterials containing parallel multi-resonators. Journal of Physics D:Applied Physics, 52, 395301(2019) [9] YAO, S. S., ZHOU, X. M., and HU, G. K. Experimental study on negative effective mass in a 1D mass-spring system. New Journal of Physics, 10, 043020(2008) [10] HUANG, H. H. and SUN, C. T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics, 11, 013003(2009) [11] HUANG, H. H., SUN, C. T., and HUANG, G. L. On the negative effective mass density in acoustic metamaterials. International Journal of Engineering Science, 47, 610-617(2009) [12] DE DOMENICO, D., ASKES, H., and AIFANTIS, E. C. Discussion of "derivation of Mindlin's first and second strain gradient elastic theory via simple lattice and continuum models" by Polyzos and Fotiadis. International Journal of Solids and Structures, 191-192, 646-651(2020) [13] HUANG, G. L. and SUN, C. T. Band gaps in a multiresonator acoustic metamaterial. Journal of Vibration and Acoustics, 132, 031003(2010) [14] ZHOU, X. Q., WANG, J., WANG, R. Q., and LIN, J. Q. Effects of relevant parameters on the bandgaps of acoustic metamaterials with multi-resonators. Applied Physics A, 122, 1-8(2016) [15] TAN, K. T., HUANG, H. H., and SUN, C. T. Optimizing the band gap of effective mass negativity in acoustic metamaterials. Applied Physics Letters, 101, 241902(2012) [16] CHEN, Y. Y., HUANG, G. L., and SUN, C. T. Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting. Journal of Vibration and Acoustics, 136, 061008(2014) [17] LIU, C. C. and REINA, C. Broadband locally resonant metamaterials with graded hierarchical architecture. Journal of Applied Physics, 123, 095108(2018) [18] AN, X. Y., FAN, H. L., and ZHANG, C. Z. Elastic wave and vibration bandgaps in two-dimensional acoustic metamaterials with resonators and disorders. Wave Motion, 80, 69-81(2018) [19] HU, G. B., TANG, L. H., DAS, R., GAO, S. Q., and LIU, H. P. Acoustic metamaterials with coupled local resonators for broadband vibration suppression. AIP Advances, 7, 025211(2017) [20] ZHAO, P. C., ZHANG, K., ZHAO, C., and DENG, Z. C. Multi-resonator coupled metamaterials for broadband vibration suppression. Applied Mathematics and Mechanics (English Edition), 42(1), 53-64(2021) http://doi.org/10.1007/s10483-021-2684-8 [21] MINDLIN, R. D. Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures, 1, 417-438(1965) [22] GAO, H., HUANG, Y., NIX, W., and HUTCHINSON, J. W. Mechanism-based strain gradient plasticity I:theory. Journal of the Mechanics and Physics of Solids, 47, 1239-1263(1999) [23] LAM, D. C. C., YANG, F., CHONG, A. C. M., WANG, J., and TONG, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics & Physics of Solids, 51, 1477-1508(2003) [24] WEI, Y. G. A new finite element method for strain gradient theories and applications to fracture analyses. European Journal of Mechanics-A/Solids, 25, 897-913(2006) [25] POLYZOS, D. and FOTIADIS, D. I. Derivation of Mindlin's first and second strain gradient elastic theory via simple lattice and continuum models. International Journal of Solids and Structures, 49, 470-480(2012) [26] ZHOU, Y. H., WEI, P. J., and ZHOU, X. L. Multi-displacement continuum modelling of the metamaterial plate with periodical arranged resonators. Applied Mathematical Modelling, 76, 655- 668(2019) [27] METRIKINE, A. V. and ASKES, H. One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. European Journal of Mechanics-A/Solids, 21, 555-572(2002) [28] ZHOU, Y. H., WEI, P. J., and TANG, Q. H. Continuum model of a one-dimensional lattice of metamaterials. Acta Mechanica, 227, 2361-2376(2016) [29] ZHOU, Y. H., WEI, P. J., LI, Y. Q., and LI, L. Continuum model of two-dimensional crystal lattice of metamaterials. Mechanics of Advanced Materials and Structures, 26, 224-237(2019) [30] ZHOU, Y. H., WEI, P. J., LI, Y. Q., and TANG, Q. H. Continuum model of acoustic metamaterials with diatomic crystal lattice. Mechanics of Advanced Materials and Structures, 24, 1059-1073(2017) [31] CHALLAMEL, N., ZHANG, H., WANG, C. M., and KAPLUNOV, J. Scale effect and higherorder boundary conditions for generalized lattices, with direct and indirect interactions. Mechanics Research Communications, 97, 1-7(2019) [32] ZHANG, H., CHALLAMEL, N., WANG, C. M., and ZHANG, Y. P. Exact and nonlocal solutions for vibration of multiply connected bar-chain system with direct and indirect neighbouring interactions. Journal of Sound and Vibration, 443, 63-73(2019) [33] GHAVANLOO, E. and FAZELZADEH, S. A. Wave propagation in one-dimensional infinite acoustic metamaterials with long-range interactions. Acta Mechanica, 230, 4453-4461(2019) [34] BORN, M. and HUANG, K. Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford (1954) [35] GHAVANLOO, E., FAZELZADEH, S. A., and RAFII-TABAR, H. Formulation of an efficient continuum mechanics-based model to study wave propagation in one-dimensional diatomic lattices. Mechanics Research Communications, 103, 103467(2020) [36] BORDIGA, G., CABRAS, L., BIGONI, D., and PICCOLROAZ, A. Free and forced wave propagation in a Rayleigh-beam grid:flat bands, Dirac cones, and vibration localization vs isotropization. International Journal of Solids and Structures, 161, 64-81(2019) |