Applied Mathematics and Mechanics (English Edition) ›› 2020, Vol. 41 ›› Issue (5): 785-804.doi: https://doi.org/10.1007/s10483-020-2610-7
• Articles • Previous Articles Next Articles
S. AFSHIN, M. H. YAS
Received:
2020-02-08
Revised:
2020-02-25
Published:
2020-04-20
Contact:
M. H. YAS
E-mail:yas@razi.ac.ir
2010 MSC Number:
S. AFSHIN, M. H. YAS. Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness. Applied Mathematics and Mechanics (English Edition), 2020, 41(5): 785-804.
[1] MITTAL, V. Polymer Nanotube Nanocomposites: Synthesis, Properties, and Applications, Wiley-Scrivener Publishing, 249-280 (2010) [2] SHAFFER, M. S. P., FAN, X., and WINDLE, A. H. Dispersion and packing of carbon nanotubes. Carbon, 36(11), 1603-1612 (1998) [3] WANG, S., LIANG, R., WANG, B., and ZHANG, C. Load-transfer in functionalized carbon nanotubes/polymer composites. Chemical Physics Letters, 457(4-6), 371-375 (2008) [4] KIM, S. W., KIM, T., KIM, Y. S., CHOI, H. S., and PARK, C. R. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon, 50(1), 3-33 (2012) [5] MA, P. C., KIM, J. K., and TANG, B. Z. Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composite Science and Technology, 67(14), 2965-2972 (2007) [6] GENG, Y., LIU, M. Y., LI, J., SHI, X. M., and KIM, J. K. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Composite Part A: Applied Science and Manufacturing, 39(12), 1876-1883 (2008) [7] NAZEM-SALIMI, M., TORABI-MERAJIN, M., and BESHARATI-GIVI, M. K. Enhanced mechanical properties of multifunctional multiscale glass/carbon/epoxy composite reinforced with carbon nanotubes and simultaneous carbon nanotubes/nanoclays. Journal of Composite Materials, 51(6), 745-758 (2017) [8] MAJEED, K., JAWAD, M., HASSAN, A., and IMUWA, I. M. Potential materials for food packaging from nanoclay/natural fibers filled hybrid composites. Materials and Design, 46, 391-410 (2013) [9] LIU, L. and GRUNLAN, J. Carbon nanotube dispersion in epoxy nanocomposites with clay. Materials Research Society Symposium Proceeding, 1057, 1015-1057 (2008) [10] ZHANG, W. D., PHANG, I. Y., and LIU, T. Growth of carbon nanotubes on clay: unique nanostructured filler for high-performance polymer nanocomposites. Advanced Materials, 18, 73-77 (2006) [11] ESMIZADEH, E., NADERI, G., YOUSEFI, A. A., and MILONE, C. Thermal and morphological study of epoxy matrix with chemical and physical hybrid of nanoclay/carbon nanotube. Journal of Minerals and Materials Characterization and Engineering, 68, 362-373 (2016) [12] GABR, M. H., OKUMURA, W., UEDA, H., KURIYAMA, W., UZAWA, K., and KIMPARA, I. Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Composite Part B: Engineering, 69, 94-100 (2015) [13] ZABIHI, O., AHMADI, M., NIKAFSHAR, S., PREYESWARY, K. C., and NAEBE, M. A technical review on epoxy-clay nanocomposites: structure, properties, and their applications in fiber reinforced composites. Composite Part B: Engineering, 135, 1-24 (2018) [14] AYATOLLAHI, M. R., SHOKRIEH, M. M., SHADLOU, S., KEFAYATI, A. R., and CHITSAZZADEH, M. Mechanical and electrical properties of epoxy/multi-walled carbon nanotube/nanoclay nanocomposites. Iranian Polymer Journal, 20(10), 835-843 (2011) [15] POURASGHAR, A. and CHEN, Z. Effect of hyperbolic heat conduction on the linear and nonlinear vibration of CNT reinforced size-dependent functionally graded microbeams. International Journal of Engineering Science, 137, 57-72 (2019) [16] ZHONG, H. and GUO, Q. Nonlinear vibration analysis of Timoshenko beams using the differential quadrature method. Nonlinear Dynamic, 32, 223-234 (2003) [17] POURASHRAF, S. T. and ANSARI, R. Nonlinear forced vibration analysis of functionally graded nanobeams in thermal environments by considering surface stress and nonlocal effects. Modares Mechanical Engineering, 14, 17-26 (2015) [18] KE, L. L., YANG, J., and KITIPORNCHAI, S. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Composite Structures, 92(3), 676-683 (2010) [19] FU, Y., WANG, J., and MAO, Y. Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Applied Mathematical Modelling, 36, 4324-4340 (2012) [20] SHOKRIEH, M. and ELAHI, M. A new model to estimate the Young's modulus of polymer concrete using micromechanical relations. Modares Mechanical Engineering, 12(2), 153-162 (2012) [21] WU, Y. P., JIA, Q. X., YU, D. S., and ZHANG, L. Q. Modeling Young's modulus of rubber-clay nanocomposites using composite theories. Polymer Testing, 23(8), 903-909 (2004) [22] GHAFAAR, M. A., MAZEN, A. A., and El-MAHALLAWY, N. A. Application of the rule of mixtures and Halpin-Tsai equations to woven fabric reinforced epoxy composites. Journal of Engineering Sciences Assiut University, 34(1), 227-236 (2006) [23] GHASEMI, A. R., MOHAMMADI, M. M., and MORADI, M. Investigation of mechanical and thermal properties of polymer composites reinforced by multi-walled carbon nanotube for reduction of residual stresses. Iranian Journal of Polymer Science and Technology, 27(3), 213-230 (2014) [24] HALPIN, J. C. and KARDOS, J. L. The Halip-Tsai equations: a review. Polymer Engineering and Science, 16(5), 344-352 (1976) [25] TANDON, G. P. and WENG, G. J. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polymer Composites, 5(4), 327-333 (1984) [26] KAIAPRASAD, G., JOSEPH, K., THOMAS, S., and PAVITHRAN, C. Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. Journal of Materials Science, 32, 4261-4267 (1997) [27] LOOS, M. R. and MANAS-ZIOCZOWER, I. Reinforcement efficiency of carbon nanotubes-myth and reality. Micromolecular Theory and Simulations, 21(2), 130-137 (2012) [28] YEH, M. K., TAI, N. H., and LIU, J. H. Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes. Carbon, 44(1), 1-9 (2006) [29] GAROFAIO, E., RUSSO, G. M., MAIO, L., and DI INCARNATO, L. Modelling of mechanical behavior of polyamide nanocomposite fibers using a three-phase Halpin-Tsai modell. Polymers, 9(1), 1-16 (2009) [30] BERT, C. W. and MALIK, M. Differential quadrature method in computational mechanics. Applied Mechanics Reviews, 49(1), 1-28 (1996) [31] SHU, C. Differential Quadrature and Its Application in Engineering, Springer-Verlag, London, 25-68 (2000) [32] LUO, J. J. and DANIEL, I. M. Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Composite Science Technology, 63(11), 1607-1616 (2003) [33] HOSUR, M., MAHDI, T. H., ISLAM, M. E., and JEELANI, S. Mechanical and viscoelastic properties of epoxy nanocomposites reinforced with carbon nanotubes, nanoclay, and binary nanoparticles. Journal of Reinforced Plastics and Composites, 36, 667-684 (2017) [34] ZARE, Y., RHEE, K. Y., and HUI, D. Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Composite Part B: Engineering, 122, 41-46 (2017) [35] SALAM, H., DONG, Y., DAVIES, I. J., and PRAMANIK, A. The effects of material formulation and manufacturing process on mechanical and thermal properties of epoxy/clay nanocomposites. International Journal of Advanced Manufacturing Technology, 87, 1999-2012 (2016) [36] GONJNY, F. H., WICHMANN, M. H. G., FIEDLER, B., and SCHULTE, K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study. Composite Science and Technology, 65(15), 2300-2313 (2005) [37] GONJNY, F. H., WICHMANN, M. H. G., KOPKE, U., FIEDLER, B., and SCHULTE, K. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composite Science and Technology, 64(15), 2363-2371 (2004) [38] BOSE, S., KHARE, R. A., and MOLDENAERS, P. Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review. Polymer, 51(5), 975-993 (2010) [39] ARASTEH, R., OMIDI, M., ROUSTA, A. H. A., and KAZEROONI, H. A study on effect of waviness on mechanical properties of multi-walled carbon nanotube/epoxy composites using modified Halpin-Tsai theory. Journal of Macromolecular Science, Part B: Physics, 50(12), 2464-2480 (2011) [40] YAZDI, A. Z., BAGHERI, R., and KAZEMINEZHAD, M. On the sensitivity of the nanostructural parameters on Young's modulus of PLSNs in fully intercalated structures. Journal of Composite Materials, 43(24), 2921-2941 (2009) [41] KAYA, E., TANOGLU, M., and OKUR, S. Layered clay/epoxy nanocomposites: thermomechanical, flame retardancy, and optical properties. Applied Polymer Science, 109(2), 834-840 (2008) [42] EESAEE, M. and SHOJAEI, A. Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments. Composite Part A: Applied Science and Manufacturing, 63, 149-158 (2014) [43] SINAHA-RAY, S. and OKAMOTO, M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11), 1539-1641 (2003) [44] BHATTACHARYA, M. Polymer nanocomposites-a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials, 9, 262-268 (2016) [45] PAVLIDOU, S. and PAPASPRIDES, C. D. A review on polymer-layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198 (2008) [46] YAS, M. H. and SAMADI, N. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. International Journal of Pressure Vessel and Piping, 98, 119-128 (2012) [47] KE, L. L., YANG, J., KITIPOMCHAI, S., and XIANG, Y. Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mechanics of Advanced Materials and Structures, 16(6), 488-502 (2009) [48] YAN, T., KITIPOMCHAI, S., YANG, J., and HE, X. Q. Dynamic behavior of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. Composite Structures, 93(11), 2992-3001 (2011) [49] AUCIELLO, N. M. Free vibration of a restrained shear-deformable tapered beam with a tip mass at its free end. Journal of Sound and Vibration, 237(3), 542-549 (2000) [50] ROSSI, R. E., LAURA, P. A. A., and GUTIERREZ, R. H. A note on transverse vibrations of a Timoshenko beam of non-uniform thickness clamped at one end and carrying a concentrated mass at the other. Journal of Sound and Vibration, 143(3), 491-502 (1990) [51] AUCIELLO, N. M. and ERCOLANO, A. A general solution for dynamic response of axially loaded non-uniform Timoshenko beams. International Journal of Solids Structures, 41(18), 4861-4874 (2004) [52] KITIPOMCHAI, S., CHEN, D., and YANG, J. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials and Design, 116, 656-665 (2017) [53] KUMAR, P. and SRINIVAS, J. Free vibration, bending and buckling of a FG-CNT reinforced composite beam comparative analysis with hybrid laminated composite beam. Multidiscipline Modeling in Materials and Structures, 13(4), 590-611 (2017) |
[1] | H. M. FEIZABAD, M. H. YAS. Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fibers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 543-562. |
[2] | Xiaodong GUO, Zhu SU, Lifeng WANG. Dynamic characteristics of multi-span spinning beams with elastic constraints under an axial compressive force [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 295-310. |
[3] | Xueqian FANG, Qilin HE, Hongwei MA, Changsong ZHU. Multi-field coupling and free vibration of a sandwiched functionally-graded piezoelectric semiconductor plate [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1351-1366. |
[4] | U. N. ARIBAS, M. AYDIN, M. ATALAY, M. H. OMURTAG. Cross-sectional warping and precision of the first-order shear deformation theory for vibrations of transversely functionally graded curved beams [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2109-2138. |
[5] | Changsong ZHU, Xueqian FANG, Jinxi LIU. Nonlinear free vibration of piezoelectric semiconductor doubly-curved shells based on nonlinear drift-diffusion model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1761-1776. |
[6] | Lingkang ZHAO, Peijun WEI, Yueqiu LI. Free vibration of thermo-elastic microplate based on spatiotemporal fractional-order derivatives with nonlocal characteristic length and time [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 109-124. |
[7] | Qingdong CHAI, Yanqing WANG, Meiwen TENG. Nonlinear free vibration of spinning cylindrical shells with arbitrary boundary conditions [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(8): 1203-1218. |
[8] | M. H. YAS, F. AKHLAGHI, S. KAMARIAN, A. H. YAS. Static and free vibration analysis of four-parameter continuous grading elliptical sandwich plates [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 523-536. |
[9] | Chi XU, Yang LI, Mingyue LU, Zhendong DAI. Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 355-370. |
[10] | Xinlei LI, Jianfei WANG. Effects of layer number and initial pressure on continuum-based buckling analysis of multi-walled carbon nanotubes accounting for van der Waals interaction [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1857-1872. |
[11] | Cheng LI, Chengxiu ZHU, C. W. LIM, Shuang LI. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1821-1840. |
[12] | M. KOHANSAL-VAJARGAH, R. ANSARI, M. FARAJI-OSKOUIE, M. BAZDID-VAHDATI. Vibration analysis of two-dimensional structures using micropolar elements [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 999-1012. |
[13] | Shaowu YANG, Yuxin HAO, Wei ZHANG, Li YANG, Lingtao LIU. Nonlinear vibration of functionally graded graphene plateletreinforced composite truncated conical shell using first-order shear deformation theory [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 981-998. |
[14] | V. V. THAM, H. Q. TRAN, T. M. TU. Vibration characteristics of piezoelectric functionally graded carbon nanotube-reinforced composite doubly-curved shells [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(6): 819-840. |
[15] | Peiliang BIAN, Hai QING. Torsional static and vibration analysis of functionally graded nanotube with bi-Helmholtz kernel based stress-driven nonlocal integral model [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 425-440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||