[1] BIRMAN, V. and KARDOMATEAS, G. A. Review of current trends in research and applications of sandwich structures. Composites Part B: Engineering, 142, 221-240(2018) [2] RAMNATH, B. V., ALAGARRAJA, K., and ELANCHEZHIAN, C. Review on sandwich composite and their applications. Materials Today: Proceedings, 16, 859-864(2019) [3] SAYYAD, A. S. and GHUGAL, Y. M. On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results. Composite Structures, 129, 177-201(2015) [4] SAYYAD, A. S. and GHUGAL, Y. M. Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature. Composite Structures, 171, 486-504(2017) [5] CAO, D., GAO, Y., YAO, M., and ZHANG, W. Free vibration of axially functionally graded beams using the asymptotic development method. Engineering Structures, 173, 442-448(2018) [6] MAO, J. J., KE, L. L., YANG, J., KITIPORNCHAI, S., and WANG, Y. S. Thermoelastic instability of functionally graded coating with arbitrarily varying properties considering contact resistance and frictional heat. Applied Mathematical Modelling, 43, 521-537(2017) [7] ZENKOUR, A. M. A comprehensive analysis of functionally graded sandwich plates: part 1, deflection and stresses. International Journal of Solids and Structures, 42(18-19), 5224-5242(2005) [8] ZENKOUR, A. M. A comprehensive analysis of functionally graded sandwich plates: part 2, buckling and free vibration. International Journal of Solids and Structures, 42(18-19), 5243-5258 (2005) [9] ABDELAZIZ, H. H., HASSEN, A. A., ISMAIL, M., LAKHDAR, B., ABDELOUAHED, T., and ADDA, B. E. A. Static analysis of functionally graded sandwich plates using an e–cient and simple refined theory. Chinese Journal of Aeronautics, 24(4), 434-448(2011) [10] XIANG, S., KANG, G. W., YANG, M. S., and ZHAO, Y. Natural frequencies of sandwich plate with functionally graded face and homogeneous core. Composite Structures, 96, 226-231(2013) [11] BESSAIM, A., HOUARI, M. S., TOUNSI, A., MAHMOUD, S. R., and BEDIA, E. A. A. A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets. Journal of Sandwich Structures & Materials, 15(6), 671-703(2013) [12] KAMARIAN, S., YAS, M. H., and POURASGHAR, A. Free vibration analysis of three-parameter functionally graded material sandwich plates resting on Pasternak foundations. Journal of Sandwich Structures & Materials, 15(3), 292-308(2013) [13] NGUYEN, V. H., NGUYEN, T. K., THAI, H. T., and VO, T. P. A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates. Composites Part B: Engineering, 66, 233-246(2014) [14] THAI, H. T., NGUYEN, T. K., VO, T. P., and LEE, J. Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. European Journal of Mechanics-A=Solids, 45, 211-225(2014) [15] MAHI, A. and TOUNSI, A. A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Applied Mathematical Modelling, 39(9), 2489-2508(2015) [16] BENNOUN, M., HOUARI, M. S. A., and TOUNSI, A. A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mechanics of Advanced Materials and Structures, 23(4), 423-431(2016) [17] AKAVCI, S. S. Mechanical behavior of functionally graded sandwich plates on elastic foundation. Composites Part B: Engineering, 96, 136-152(2016) [18] MENASRIA, A., BOUHADRA, A., TOUNSI, A., BOUSAHLA, A. A., and MAHMOUD, S. R. A new and simple HSDT for thermal stability analysis of FG sandwich plates. Steel and Composite Structures, 25(2), 157-175(2017) [19] DO, T. V., BUI, T. Q., YU, T. T., PHAM, D. T., and NGUYEN, C. T. Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment. Journal of Computational Science, 21, 164-181(2017) [20] ZENKOUR, A. M. A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Composite Structures, 201, 38-48(2018) [21] MEKSI, R., BENYOUCEF, S., MAHMOUDI, A., TOUNSI, A., ADDA-BEDIA, E. A., and MAHMOUD, S. R. An analytical solution for bending, buckling and vibration responses of FGM sandwich plates. Journal of Sandwich Structures & Materials, 21(2), 727-757(2019) [22] MAHMOUDI, A., BENYOUCEF, S., TOUNSI, A., BENACHOUR, A., ADDA-BEDIA, E. A., and MAHMOUD, S. R. A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations. Journal of Sandwich Structures & Materials, 21(6), 1906-1929(2019) [23] NIKBAKHT, S., KAMARIAN, S., and SHAKERI, M. A review on optimization of composite structures, part II: functionally graded materials. Composite Structures, 214, 83-102(2019) [24] TORNABENE, F. and VIOLA, E. Free vibrations of four-parameter functionally graded parabolic panels and shells of revolution. European Journal of Mechanics-A=Solids, 28(5), 991-1013(2009) [25] ARAGH, B. S. and YAS, M. H. Three-dimensional analysis of thermal stresses in four-parameter continuous grading fiber reinforced cylindrical panels. International Journal of Mechanical Sciences, 52(8), 1047-1063(2010) [26] KAMARIAN, S., SADIGHI, M., SHAKERI, M., and YAS, M. H. Free vibration response of sandwich cylindrical shells with functionally graded material face sheets resting on Pasternak foundation. Journal of Sandwich Structures & Materials, 16(5), 511-533(2014) [27] FESHARAKI, J. J. and ROGHANI, M. Thermo-mechanical behavior of a functionally graded hollow cylinder with an elliptic hole. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(1), 1-15(2020) [28] LEISSA, A. W. Vibration of a simply-supported elliptical plate. Journal of Sound and Vibration, 6(1), 145-148(1967) [29] LEISSA, A. W. Vibration of Plates, Scientific and Technical Information Division, National Aeronautics and Space Administration, 67-68(1969) [30] BERES, D. P. Vibration analysis of a completely free elliptical plate. Journal of Sound and Vibration, 34(3), 441-443(1974) [31] LIM, C. W., KITIPORNCHAI, S., and LIEW, K. M. A free-vibration analysis of doubly connected super-elliptical laminated composite plates. Composites Science and Technology, 58(3-4), 435-445 (1998) [32] ALTEKIN, M. and ALTAY, G. Static analysis of point-supported super-elliptical plates. Archive of Applied Mechanics, 78(4), 259-266(2008) [33]ÇERIBAŞI, S. Static and dynamic analyses of thin uniformly loaded super elliptical FGM plates. Mechanics of Advanced Materials and Structures, 19(5), 323-335(2012) [34] HOSSEINI-HASHEMI, S. and ATASHIPOUR, S. R. Free vibration analysis of functionally graded elliptical plates. Journal of Marine Engineering, 8(15), 43-60(2012) [35] ZHANG, D. G. and ZHOU, H. M. Nonlinear symmetric free vibration analysis of super elliptical isotropic thin plates. Computers; Materials & Continua, 40(1), 21-34(2014) [36] ALTEKIN, M. Bending of super-elliptical Mindlin plates by finite element method. Teknik Dergi, 29(4), 8469-8496(2018) [37] MAO, J. J., ZHANG, W., and LU, H. M. Static and dynamic analyses of graphene-reinforced aluminium-based composite plate in thermal environment. Aerospace Science and Technology, 107, 106354(2020) [38] MAO, J. J., LAI, S. K., ZHANG, W., and LIU, Y. Comparisons of nonlinear vibrations among pure polymer plate and graphene platelet reinforced composite plates under combined transverse and parametric excitations. Composite Structures, 265, 113767(2021) [39] MAO, J. J. and ZHANG, W. Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation. Composite Structures, 203, 551- 565(2018) [40] FANTUZZI, N., TORNABENE, F., and VIOLA, E. Four-parameter functionally graded cracked plates of arbitrary shape: a GDQFEM solution for free vibrations. Mechanics of Advanced Materials and Structures, 23(1), 89-107(2016) |