[1] BHARILYA, R. K. and PUROHIT, R. Application of functionally graded nano material (FGNM) laminates for solenoid based actuators. Materials Today:Proceedings, 5, 20736-20740(2018) [2] VABEN, R., RAUWALD, K. H., GUILLON, O., AKTAA, J., WEBER, T., BACK, H. C., QU, D., and GIBMEIER, J. Vacuum plasma spraying of functionally graded tungsten/EUROFER97 coatings for fusion applications. Fusion Engineering and Design, 133, 148-156(2018) [3] SMITH, J. A., MELE, E., RIMINGTON, R. P., CAPEL, A. J., LEWIS, M. P., SILBERSCHMIDT, V. V., and LI, S. Polydimethylsiloxane and poly(ether) ether ketone functionally graded composites for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 93, 130-142(2019) [4] QI, L. Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters. Energy, 171, 721-730(2019) [5] SHAH, A. T., ZAHID, S., IKRAM, F., MAQBOOL, M., CHAUDHRY, A. A., RAHIM, M. I., SCHMIDT, F., KHAN, A. S., and REHMAN, I. U. Tri-layered functionally graded membrane for potential application in periodontal regeneration. Materials Science and Engineering:C, 103, 109812(2019) [6] LIU, H., DING, S., and NG, B. F. Impact response and energy absorption of functionally graded foam under temperature gradient environment. Composites Part B:Engineering, 172, 516-532(2019) [7] SHOJAEIAN, M. and TADI-BENI, Y. Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sensors and Actuators A:Physical, 232, 49-62(2015) [8] AKBARZADEH, A. H., ABEDINI, A., and CHEN, Z. T. Effect of micromechanical models on structural responses of functionally graded plates. Composite Structures, 119, 598-609(2015) [9] TAATI, E. Analytical solutions for the size dependent buckling and postbuckling behavior of functionally graded micro-plates. International Journal of Engineering Science, 100, 45-60(2016) [10] MEHRALIAN, F. and TADI-BENI, Y. Size-dependent torsional buckling analysis of functionally graded cylindrical shell. Composites Part B:Engineering, 94, 11-25(2016) [11] LOU, J., HE, L., WU, H., and DU, J. Pre-buckling and buckling analyses of functionally graded microshells under axial and radial loads based on the modified couple stress theory. Composite Structures, 142, 226-237(2016) [12] ZHANG, L. W., ZHANG, Y., and LIEW, K. M. Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory. Applied Mathematical Modelling, 49, 691-704(2017) [13] ZHU, C. S., FANG, X. Q., and LIU, J. X. Surface energy effect on buckling behavior of the functionally graded nano-shell covered with piezoelectric nano-layers under torque. International Journal of Mechanical Sciences, 133, 662-673(2017) [14] SHAFIEI, N. and KAZEMI, M. Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams. Aerospace Science and Technology, 66, 1-11(2017) [15] THAI, S., THAI, H. T., VO, T. P., and REDDY, J. N. Post-buckling of functionally graded microplates under mechanical and thermal loads using isogeomertic analysis. Engineering Structures, 150, 905-917(2017) [16] YANG, T., TANG, Y., LI, Q., and YANG, X. D. Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams. Composite Structures, 204, 313-319(2018) [17] SHAFIEI, N. and SHE, G. L. On vibration of functionally graded nano-tubes in thermal environment. International Journal of Engineering Science, 133, 84-98(2018) [18] AVRAMOV, K. V. Nonlinear vibrations characteristics of single-walled carbon nanotubes by nonlocal elastic shell model. International Journal of Non-Linear Mechanics, 107, 149-160(2018) [19] CHU, L. and DUI, G. Exact solutions for functionally graded micro-cylinders in first gradient elasticity. International Journal of Mechanical Sciences, 148, 366-373(2018) [20] JIAO, P., ALAVI, A. H., BORCHANI, W., and LAJNEF, N. Micro-composite films constrained by irregularly bilateral walls:a size-dependent post-buckling analysis. Composite Structures, 195, 219-231(2018) [21] TAATI, E. On buckling and post-buckling behavior of functionally graded micro-beams in thermal environment. International Journal of Engineering Science, 128, 63-78(2018) [22] JIA, X. L., KE, L. L., ZHONG, X. L., SUN, Y., YANG, J., and KITIPORNCHAI, S. Thermalmechanical-electrical buckling behavior of functionally graded micro-beams based on modified couple stress theory. Composite Structures, 202, 625-634(2018) [23] RUOCCO, E., ZHANG, H., and WANG, C. M. Buckling and vibration analysis of nonlocal axially functionally graded nanobeams based on Hencky-bar chain model. Applied Mathematical Modelling, 63, 445-463(2018) [24] SARAFRAZ, A., SAHMANI, S., and AGHDAM, M. M. Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects. Applied Mathematical Modelling, 66, 195-226(2019) [25] TRABELSSI, M., EL-BORGI, S., FERNANDES, R., and KE, L. L. Nonlocal free and forced vibration of a graded Timoshenko nanobeam resting on a nonlinear elastic foundation. Composites Part B:Engineering, 157, 331-349(2019) [26] KIM, J., ZUR, K. K., and REDDY, J. N. Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Composite Structures, 209, 879-888(2018) [27] KARAMI, B., SHAHSAVARI, D., JANGHORBAN, M., and LI, L. Influence of homogenization schemes on vibration of functionally graded curved microbeams. Composite Structures, 216, 67-79(2019) [28] ARIA, A. I. and FRISWELL, M. I. A nonlocal finite element model for buckling and vibration of functionally graded nanobeams. Composites Part B:Engineering, 166, 233-246(2019) [29] ZHU, X. and LI, L. Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model. Composite Structures, 178, 87-96(2017) [30] ROMANO, G., BARRETTA, R., DIACO, M., and MAROTTI DE SCIARRA, F. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences, 121, 151-156(2017) [31] LI, L., LI, X., and HU, Y. Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science, 102, 77-92(2016) [32] LU, L., ZHU, L., GUO, X. M., ZHAO, J. Z., and LIU, G. Z. A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Applied Mathematics and Mechanics (English Edition), 40(12), 1695-1722(2019) https://doi.org/10.1007/s10483-019-2549-7 [33] ZHU, X. and LI, L. A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect. Applied Mathematics and Mechanics (English Edition), 40(11), 1561-1588(2019) https://doi.org/10.1007/s10483-019-2541-5 [34] REDDY, J. N. and WANG, C. M. Deflection relationships between classical and third-order plate theories. Acta Mechanica, 130, 199-208(1998) [35] ERINGEN, A. C. Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science, 10, 425-435(1972) [36] REUSS, A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-Journal of Applied Mathematics and Mechanics, 9, 49-58(1929) [37] VOIGT, W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik, 274, 573-587(1889) [38] MORI, T. and TANAKA, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571-574(1973) [39] MISHNAEVSKY, J., JR. Computational Mesomechanics of Composites, Wiley-Interscience, New York, 2979-2987(2007) [40] ANITESCU, C., ATROSHCHENKO, E., ALAJLAN, N., and RABCZUK, T. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials and Continua, 59, 345-359(2019) [41] RABCZUK, T., REN, H., and ZHUANG, X. A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Computers, Materials and Continua, 59, 31-55(2019) |