[1] JAWAID, M. and KHALIL, H. Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydrate Polymers, 86(1), 1–18(2011) [2] SUN, J. B., XU, X. S., and LIM, C. W. Accurate symplectic space solutions for thermal buckling of functionally graded cylindrical shells. Composites Part B: Engineering, 55, 208–214(2013) [3] MAIER, A., SCHMIDT, R., OSWALD-TRANTA, B., and SCHLEDJEWSKI, R. Non-destructive thermography analysis of impact damage on large-scale CFRP automotive parts. Materials, 7(1), 413–429(2014) [4] BACHMANN, J., HIDALGO, C., and BRICOUT, S. Environmental analysis of innovative sustainable composites with potential use in aviation sector: a life cycle assessment review. Science China: Technological Sciences, 60(9), 1301–1317(2017) [5] KARATAS, M. A. and GOKKAYA, H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318–326(2018) [6] SALVETAT-DELMOTTE, J. P. and RUBIO, A. Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon, 40(10), 1729–1734(2002) [7] LIM, C. W. and YANG, Y. Wave propagation in carbon nanotubes: nonlocal elasticity-induced stiffness and velocity enhancement effects. Journal of Mechanics of Materials and Structures, 5(3), 459–476(2010) [8] YAN, J. W., LIEW, K. M., and HE, L. H. Analysis of single-walled carbon nanotubes using the moving Kriging interpolation. Computer Methods in Applied Mechanics and Engineering, 229, 56–67(2012) [9] GHASEMI, H., RAFIEE, R., ZHUANG, X., MUTHU, J., and RABCZUK, T. Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling. Computational Materials Science, 85, 295–305(2014) [10] JIA, P. and LIM, C. W. Thermal-acoustic wave generation and propagation using suspended carbon nanotube thin film in fluidic environments. Journal of Applied Mechanics: Transactions of the ASME, 83(9), 091007(2016) [11] ZHOU, Y., PERVIN, F., LEWIS, L., and JEELANI, S. Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 452, 657–664(2007) [12] PARK, J. G., KEUM, D. H., and LEE, Y. H. Strengthening mechanisms in carbon nanotubereinforced aluminum composites. Carbon, 95, 690–698(2015) [13] THOSTENSON, E. T., REN, Z. F., and CHOU, T. W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 61(13), 1899–1912(2001) [14] COLEMAN, J. N., KHAN, U., BLAU, W. J., and GUN’KO, Y. K. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon, 44(9), 1624–1652(2006) [15] SHARIATI, A., GHABUSSI, A., HABIBI, M., SAFARPOUR, H., SAFARPOUR, M., TOUNSI, A., and SAFA, M. Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin-Walled Structures, 154, 106840(2020) [16] MAHARJAN, A., YU, P., and LEE, S. Y. Nonlinear dynamic and crack behaviors of carbon nanotubes-reinforced composites with various geometries. Nanotechnology Reviews, 11(1), 1307– 1321(2022) [17] BAKSHI, S. R., LAHIRI, D., and AGARWAL, A. Carbon nanotube reinforced metal matrix composites: a review. International Materials Reviews, 55(1), 41–64(2010) [18] TAO, F. and SALMERON, M. Insitu studies of chemistry and structure of materials in reactive environments. Science, 331(6014), 171–174(2011) [19] BIRMAN, V. and BYRD, L. W. Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews, 60(1-6), 195–216(2007) [20] SHEN, H. S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures, 91(1), 9–19(2009) [21] SCIUVA, M. D. and SORRENTI, M. Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended refined zigzag theory. Composite Structures, 227, 111324(2019) [22] ZGHAL, S., FRIKHA, A., and DAMMAK, F. Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes. Applied Mathematics and Mechanics (English Edition), 41(8), 1227–1250(2020) https://doi.org/10.1007/s10483-020-2633-9 [23] CIVALEK, O. and JALAEI, M. H. Shear buckling analysis of functionally graded (FG) carbon nanotube reinforced skew plates with different boundary conditions. Aerospace Science and Technology, 99, 105753(2020) [24] MALLEK, H., JRAD, H., WALI, M., and DAMMAK, F. Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory. Engineering with Computers, 37(2), 1389–1407(2021) [25] GARG, A., CHALAK, H. D., ZENKOUR, A. M., BELARBI, M. O., and SAHOO, R. Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore. Thin-Walled Structures, 170, 108626(2022) [26] XU, C., LI, Y., LU, M., and DAI, Z. Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity. Applied Mathematics and Mechanics (English Edition), 43(3), 355–370(2022) https://doi.org/10.1007/s10483-022-2828-5 [27] CALHOUN, P. R. and DADEPPO, D. A. Nonlinear finite element analysis of clamped arches. Journal of Structural Engineering, 109(3), 599–612(1983) [28] HODGES, D. H. Non-linear inplane deformation and buckling of rings and high arches. International Journal of Non-Linear Mechanics, 34(4), 723–737(1999) [29] PI, Y. L., BRADFORD, M. A., and UY, B. In-plane stability of arches. International Journal of Solids and Structures, 39(1), 105–125(2002) [30] BATENI, M. and ESLAMI, M. R. Non-linear in-plane stability analysis of FGM circular shallow arches under central concentrated force. International Journal of Non-Linear Mechanics, 60, 58– 69(2014) [31] YANG, Z. C., LIU, A. R., PI, Y. L., FU, J. Y., and GAO, Z. K. Nonlinear dynamic buckling of fixed shallow arches under impact loading: an analytical and experimental study. Journal of Sound and Vibration, 487, 115622(2020) [32] YANG, Z. C., LIU, A. R., LAI, S. K., SAFAEI, B., LYU, J. E., HUANG, Y. H., and FU, J. Y. Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches. Engineering Structures, 250, 113243(2022) [33] YANG, Z. C., WU, D., YANG, J., LAI, S. K., LYU, J. E., LIU, A. R., and FU, J. Y. Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load. Thin-Walled Structures, 166, 108103(2021) [34] SHI, Z. Y., YAO, X. L., PANG, F. Z., and WANG, Q. S. A semi-analytical solution for in-plane free vibration analysis of functionally graded carbon nanotube reinforced composite circular arches with elastic restraints. Composite Structures, 182, 420–434(2017) [35] ZHANG, Y. Y., ZHANG, B., SHEN, H. M., WANG, Y. X., ZHANG, X., and LIU, J. Nonlinear bending analysis of functionally graded CNT-reinforced shallow arches placed on elastic foundations. Acta Mechanica Solida Sinica, 33(2), 164–186(2020) [36] BABAEI, H. Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation. Applied Mathematics and Computation, 413, 126606(2022) [37] WU, H., KITIPORNCHAI, S., and YANG, J. Thermo-electro-mechanical postbuckling of piezoelectric FG-CNTRC beams with geometric imperfections. Smart Materials and Structures, 25(9), 095022(2016) [38] TORABI, J., ANSARI, R., and HASSANI, R. Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory. European Journal of Mechanics A: Solids, 73, 144–160(2019) [39] KHOSRAVI, S., ARVIN, H., and KIANI, Y. Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment. International Journal of Mechanical Sciences, 164, 105187(2019) [40] PI, Y. L. and BRADFORD, M. A. Non-linear in-plane postbuckling of arches with rotational end restraints under uniform radial loading. International Journal of Non-Linear Mechanics, 44(9), 975–989(2009) [41] PI, Y. L. and TRAHAIR, N. S. In-plane inelastic buckling and strengths of steel arches. Journal of Structural Engineering, 122(7), 734–747(1996) [42] SHENAS, A. G., MALEKZADEH, P., and ZIAEE, S. Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment. Composite Structures, 162, 325–340(2017) [43] TANG, Y., TANG, F., ZHENG, J., and LI, Z. In-plane asymmetric buckling of an FGM circular arch subjected to thermal and pressure fields. Engineering Structures, 239, 112268(2021) |