[1] WANG, Z. L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today, 5, 540–552(2010) [2] WU, W. and WANG, Z. L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nature Reviews Materials, 1, 1–17(2016) [3] WANG, Z. L. and SONG, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312, 242–246(2006) [4] HUANG, H., ZHANG, H., CAO, Y., LIU, Y., MA, K., LIU, K., and LIANG, Y. C. Hightemperature three-dimensional GaN-based hall sensors for magnetic field detection. Journal of Physics D: Applied Physics, 54, 075003(2020) [5] HAN, W., ZHOU, Y., ZHANG, Y., CHEN, C. Y., LIN, L., WANG, X., and WANG, Z. L. Correction to strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS Nano, 6, 5736–5736(2012) [6] YU, R., WU, W., DING, Y., and WANG, Z. L. GaN nanobelt-based strain-gated piezotronic logic devices and computation. ACS Nano, 7, 6403–6409(2013) [7] WANG, Z. L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides — from materials to nanodevices. Advanced Materials, 15, 432–436(2003) [8] ZHANG, C., WANG, X., CHEN, W., and YANG, J. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Material Structures, 26, 025030(2016) [9] ZHANG, C. L., LUO, Y. X., CHENG, R. R., and WANG, X. Y. Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force. MRS Advances, 2, 3421–3426(2017) [10] ZHANG, C., WANG, X., CHEN, W., and YANG, J. Bending of a cantilever piezoelectric semiconductor fiber under an end force. Generalized Models and Non-classical Approaches in Complex Materials 2, Springer, Cham, 261–278(2018) [11] YANG, G., DU, J., WANG, J., and YANG, J. Extension of a piezoelectric semiconductor fiber with consideration of electrical nonlinearity. Acta Mechanica, 229, 4663–4676(2018) [12] ZHAO, M. H., MA, Z. L., LU, C. S., and ZHANG, Q. Y. Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber. Applied Mathematics and Mechanics (English Edition), 42(5), 665–676(2021) https://doi.org/10.1007/s10483-021-2726-5 [13] LI, P., JIN, F., and YANG, J. Effects of semiconduction on electromechanical energy conversion in piezoelectrics. Smart Materials and Structures, 24, 025021(2015) [14] WANG, G., LIU, J., LIU, X., FENG, W., and YANG, J. Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. Journal of Applied Physics, 124, 094502(2018) [15] LUO, Y., ZHANG, C., CHEN, W., and YANG, J. An analysis of PN junctions in piezoelectric semiconductors. Journal of Applied Physics, 122, 204502(2017) [16] LUO, Y., CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Electromechanical fields near a circular PN junction between two piezoelectric semiconductors. Acta Mechanica Solida Sinica, 31, 127–140(2018) [17] FAN, S., YANG, W., and HU, Y. Adjustment and control on the fundamental characteristics of a piezoelectric PN junction by mechanical-loading. Nano Energy, 52, 416–421(2018) [18] FAN, S., HU, Y., and YANG, J. Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber. Applied Mathematics and Mechanics (English Edition), 40(5), 591–600(2019) https://doi.org/10.1007/s10483-019-2481-6 [19] YANG, G., DU, J., WANG, J., and YANG, J. Electromechanical fields in a nonuniform piezoelectric semiconductor rod. Journal of Mechanics of Materials and Structures, 13, 103–120(2018) [20] YANG, W., HU, Y., and PAN, E. Tuning electronic energy band in a piezoelectric semiconductor rod via mechanical loading. Nano Energy, 66, 104147(2019) [21] CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied Physics, 124, 064506(2018) [22] LUO, Y., ZHANG, C., CHEN, W., and YANG, J. Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 54, 341–348(2018) [23] YANG, G., YANG, L., DU, J., WANG, J., and YANG, J. PN junctions with coupling to bending deformation in composite piezoelectric semiconductor fibers. International Journal of Mechanical Sciences, 173, 105421(2020) [24] CHENG, R., ZHANG, C., ZHANG, C., and CHEN, W. Magnetically controllable piezotronic responses in a composite semiconductor fiber with multiferroic coupling effects. Physica Status Solidi A, 217, 1900621(2020) [25] LIANG, C., ZHANG, C., CHEN, W., and YANG, J. Electrical response of a multiferroic composite semiconductor fiber under a local magnetic field. Acta Mechanica Solida Sinica, 33, 663–673(2020) [26] KONG, D., CHENG, R., ZHANG, C., and ZHANG, C. Dynamic manipulation of piezotronic behaviors of composite multiferroic semiconductors through time-dependent magnetic field. Journal of Applied Physics, 128, 064503(2020) [27] CHENG, R., ZHANG, C., and YANG, J. Thermally induced carrier distribution in a piezoelectric semiconductor fiber. Journal of Electronic Materials, 48, 4939–4946(2019) [28] CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Temperature effects on mobile charges in extension of composite fibers of piezoelectric dielectrics and non-piezoelectric semiconductors. International Journal of Applied Mechanics, 11, 1950088(2019) [29] CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Temperature effects on PN junctions in piezoelectric semiconductor fibers with thermoelastic and pyroelectric couplings. Journal of Electronic Materials, 49, 3140–3148(2020) [30] CHENG, R., ZHANG, C., CHEN, W., and YANG, J. Electrical behaviors of a piezoelectric semiconductor fiber under a local temperature change. Nano Energy, 66, 104081(2019) [31] YANG, Z., SUN, L., ZHANG, C., ZHANG, C., and GAO, C. Analysis of a composite piezoelectric semiconductor cylindrical shell under the thermal loading. Mechanics of Materials, 164, 104153(2022) [32] FENG, Q., SHI, X., XING, Y., LI, T., LI, F., PAN, D., and LIANG, H. Thermoelectric microgenerators using a single large-scale Sb doped ZnO microwires. Journal of Alloys and Compounds, 739, 298–304(2018) [33] DOU, Y., WU, F., FANG, L., LIU, G., MAO, C., WAN, K., and ZHOU, M. Enhanced performance of dye-sensitized solar cell using Bi2Te3 nanotube/ZnO nanoparticle composite photoanode by the synergistic effect of photovoltaic and thermoelectric conversion. Journal of Power Sources, 307, 181–189(2016) [34] LORD, H. W. and SHULMAN, Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15, 299–309(1967) [35] GREEN, A. E. and LINDSAY, K. A. Thermoelasticity. Journal of Elasticity, 2, 1–7(1972) [36] XIONG, Q. L. and TIAN, X. G. Response of a semi-infinite microstretch homogeneous isotropic body under thermal shock. Journal of Applied Mechanics, 78, 925–948(2011) [37] TANG, F. and SONG, Y. Wave reflection in semiconductor nanostructures. Theoretical and Applied Mechanics Letters, 8, 160–163(2018) [38] CHANDRASEKHARAIAH, D. S. A generalized linear thermoelasticity theory for piezoelectric media. Acta Mechanica, 71(1), 39–49(1988) [39] CHANDRASEKHARAIAH, D. S. A temperature-rate-dependent theory of thermopiezoelectricity. Journal of Thermal Stresses, 7, 293–306(1984) [40] HE, T. H., SHEN, Y. P., and TIAN, X. G. A two-dimensional generalized thermal shock problem for a half-space in electromagneto-thermoelasticity. International Journal of Engineering Science, 42, 809–823(2004) [41] LI, H. M., WANG, Y. M., WANG, B. Y., and HE, T. H. The dynamic response of a rotating thick piezoelectric plate with thermal relaxations. Applied Mechanics and Materials, 52, 1565–1570(2011) [42] WAUER, J. and SUHERMAN, S. Thickness vibrations of a piezo-semiconducting plate layer. International Journal of Engineering Science, 35, 1387–1404(1997) [43] SLADEK, J., SLADEK, V., PAN, E., and WÜNSCHE, M. Fracture analysis in piezoelectric semiconductors under a thermal load. Engineering Fracture Mechanics, 126, 27–39(2014) [44] SZE, S. M. Physics of Semiconductor Devices, Wiley, Hoboken (1981) [45] WU, W., YU, H., XUE, R., ZHAO, T., TAO, R., LIAO, H., and JI, Z. Efficient model for the elastic load of film-substrate system involving imperfect interface effects. Theoretical and Applied Mechanics Letters, 10, 390–404(2020) [46] DURBIN, F. Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Computer Journal, 17, 371–376(1974) [47] SADAO, A. Properties of Group-IV, III-V, and II-VI Semiconductors, Wiley, Hoboken (2005) [48] LI, C. L., GUO, H. L., TIAN, X. G., and HE, T. H. Generalized piezoelectric thermoelasticity problems with strain rate and transient thermo-electromechanical responses analysis. Zeitschrift für Angewandte Mathematik und Mechanik, 100, e201900067(2020) |