ON THE RESONANT GENERATION OF WEAKLY NONLINEAR STOKES WAVES IN REGIONS WITH FAST VARYING TOPOGRAPHY AND FREE SURFACE CURRENT
HUANG Hu1,2, ZHOU Xi-reng 1
1. School of Civil Engineering, Tianjin University, Tianjin 300072, P.R.China; 2. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, P.R.China
HUANG Hu;ZHOU Xi-reng . ON THE RESONANT GENERATION OF WEAKLY NONLINEAR STOKES WAVES IN REGIONS WITH FAST VARYING TOPOGRAPHY AND FREE SURFACE CURRENT. Applied Mathematics and Mechanics (English Edition), 2001, 22(6): 730-740.
[1] Kennedy J F. The mechanics of dunes and antidunes in erodible-bed channels[J]. J Fluid Mech,1963,16: 521-544. [2] Heathershaw A D. Seabed-wave resonance and and bar growth[J]. Nature, 1982,296 (25):343-345. [3] Davies A G, Heathershaw A D. Surface-wave propagation over sinusoidally varying topography[J].J Fluid Mech, 1984,144:419-443. [4] Begi S, Battjes J A. Numerical simulation of nonlinear wave propagation over a bar[J]. Coastal Engineering, 1994,23:1-16. [5] Sammarco P, Mei C C, Trulsen K. Nonlinear resonance of free surface waves in a current over a sinusoidal bottom: a numerical study[J]. J Fluid Mech, 1994,279: 377-405. [6] Naciri M, Mei C C. Evolution of a short surface wave on a very long surface wave of finite amplitude[J]. J Fluid Mech, 1992,235:415-452. [7] Guckenheimer J, Holmes P. Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields[M]. New York: Springer-Verlag, 1983.