[1] Dingemans M W. Water Wave Propagation Over Uneven Bottoms[M]. Singapore: World Scientific, 1997. [2] Kirby J T. Nonlinear, dispersive long waves in water of variable depth[A]. In: Hunt J N Ed.Gravity Waves in Water of Finite Depth [C]. Southampton: Computational Mechanics Publications,1997,55-126. [3] Kirby J T. A note on linear surface wave-current interaction[J]. J Geophys Res, 1984,89 (C1):745-747. [4] Yoon S B, Liu P L-F. Interaction of currents and weakly nonlinear water waves in shallow water [J]. J Fluid Mech, 1989,205:397-419. [5] Liu PL-F. Wave transformation[A]. In: LeMehaute B, Hanes D M Eds. TheSea, OceanEngineering Science[C]. New York: J Wiley and Sons, 1990,27-63. [6] Kirby J T. A general wave equation for waves over rippled beds [J]. J Fluid Mech, 1986,162:171-186. [7] Chamberlain P G, Porter D. The modified mild-slope equation [J]. J Fluid Mech, 1995,291:393-407. [8] Chandrasekera C N, Cheung K F. Extended linear refraction-diffraction model[J]. J Wtrwy Port Coast and Oc Engrg, 1997,123(5):280-286. [9] Lee C, Park W S, Cho Y-S, et al. Hyperbolic mild-slope equations extended to account for rapidly varying topography[J]. Coastal Eng, 1998,34: 243-257. [10] Thomas G P, Klopman G. Wave-current interactions in the near shore region[A]. In: Hunt J N Ed. Gravity Waves in Water of Finite Depth [C]. Southampton: Computational Mechanics Publications, 1997,255-319. [11] Zakharov V E. Stability of periodic waves of finite amplitude on the surface of a deep fluid[J]. J Appl Mech Tech Phys, 1968,2:190-194. [12] Broer L J F. On the Hamiltonian theory of surface waves[J]. Appl Sci Res,1974,30(5):430-446. [13] Miles J W. On Hamilton' s principle for surface waves [J]. J Fluid Mech, 1977,83:153-158. [14] Berkhoff J C W. Computation of combined refraction-diffraction[A]. In: 13 th Inte Conf on Coastal Engng [C]. New York: ASCE, 1972,471-490. |