THEORY AND METHOD OF OPTIMAL CONTROL SOLUTION TO DYNAMIC SYSTEM PARAMETERS IDENTIFICATION (I)──FUNDAMENTAL CONCEPT AND DETERMINISTIC SYSTEM PARAMETERS IDENTIFICATION
Wu Zhigang1, Wang Benli1, Ma Xingrui 2
1.Harbin Institute of Technology, Harbin 150001, P. R. China; 2. Chinese Academy of Space Technology, Beijing 100081, P. R. China
Project supported by the National the Across Century Scientist Foundation Defence Science and Technology Foundation(A966000-50)and from the State Education Commission of China
Wu Zhigang;Wang Benli;Ma Xingrui . THEORY AND METHOD OF OPTIMAL CONTROL SOLUTION TO DYNAMIC SYSTEM PARAMETERS IDENTIFICATION (I)──FUNDAMENTAL CONCEPT AND DETERMINISTIC SYSTEM PARAMETERS IDENTIFICATION. Applied Mathematics and Mechanics (English Edition), 1999, 19(2): 135-142.
[1] Cai Jinshi. Identification and Modeling of Dynamic System [M]. Beijing:National Defense Industry Publishing House, 1991 (in Chinese). [2] Huang Guangyuan, Liu Xiaojun. Inverse Problem of Mathematical Physics [M]. Jina:Shandong Scientific and Technical Publishing House, 1993 (in Chinese). [3] Wang Kangning. Mathematical Theory of Optimal Control [M]. Beijing:National Defense Industry Publishing House, 1995 (in Chinese). [4] Yong Jiongmin. Dynamic Programming and HJB Equation [M]. Shanghai:Shanghai Scientific and Technical Publishing House, 1992 (in Chinese). [5] Stengel R F. Stochastic Optimal Control [M]. New York:John Wiley & Sons, Inc, 1986. [6] Bryson A E, Ho Yu-Chi. Applied Optimal Control [M]. New York:Hemisphere Publishing Corporation, 1975. [7] Crandall M G, Lions P L. Viscosity solutions of Hamilton-Jacobi equations [J]. Trans Amer Math Soc, 1983, 277(1):1~42. [8] Crandall M G, Evans L C, Lions P L. Some properties of viscosity solutions of HamiltonJacobi equations [J]. Trans Amer Math Soc, 1984, 282(2):487~502