[1] Kojima, A. and Morari, M. LQ control for constrained continuous-time systems. Automatica, 40, 1143-1155 (2004)
[2] Bemporad, A., Borrelli, F., and Morari, M. Model predictive control based on linear programming— the explicit solution. IEEE Transactions on Automatic Control, 47, 1974-1985 (2002)
[3] Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. The explicit linear quadratic regulator for constrained systems. Automatica, 38, 3-20 (2002)
[4] Goebel, R. and Subbotin, M. Continuous time linear quadratic regulator with control constraints via convex duality. IEEE Transactions on Automatic Control, 52, 886-892 (2007)
[5] Betts, J. T. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 21, 193-207 (1998)
[6] Betts, J. T. Practical Methods for Optimal Control Using Nonlinear Programming, Society for Industrial and Applied Mathematics, Philadelphia (2001)
[7] Hull, D. G. Initial lagrange multipliers for the shooting method. Journal of Guidance, Control, and Dynamics, 31, 1490-1492 (2008)
[8] Lenz, S. M., Bock, H. G., Schlöder, J. P., Kostina, E. A., Gienger, G., and Ziegler, G. Multiple shooting method for initial satellite orbit determination. Journal of Guidance, Control, and Dynamics, 33, 1334-1346 (2010)
[9] Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V. Direct trajectory optimization and costate estimation via an orthogonal collocation method. Journal of Guidance, Control, and Dynamics, 29, 1435-1440 (2006)
[10] Hull, D. G. Conversion of optimal control problems into parameter optimization problems. Journal of Guidance, Control, and Dynamics, 20, 57-60 (1997)
[11] Biegler, L. T. Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes, Society for Industrial and Applied Mathematics, Philadelphia (2010)
[12] Margraves, C. R. and Paris, S. W. Direct trajectory optimization using nonlinear programming and collocation. Journal of Guidance, Control, and Dynamics, 10, 338-342 (1987)
[13] Tang, S. and Conway, B. A. Optimization of low-thrust interplanetary trajectories using collocation and nonlinear programming. Journal of Guidance, Control, and Dynamics, 18, 599-604 (1995)
[14] Fahroo, F. and Ross, I. M. Costate estimation by a Legendre pseudospectral method. Journal of Guidance, Control, and Dynamics, 24, 270-277 (2001)
[15] Gong, Q., Ross, I. M., and Fahroo, F. Costate computation by a Chebyshev pseudospectral method. Journal of Guidance, Control, and Dynamics, 33, 623-628 (2010)
[16] Warner, M. S. and Hodges, D. H. Solving optimal control problems using hp-version finite elements in time. Journal of Guidance, Control, and Dynamics, 23, 86-94 (2000)
[17] Estep, D. J., Hodges, D. H., and Warner, M. The solution of a launch vehicle trajectory problem by an adaptive finite-element method. Computer Methods in Applied Mechanics and Engineering, 190, 4677-4690 (2001)
[18] Zhong, W. X. and Zhang, R. L. Parametric variational principles and their quadratic programming solutions in plasticity. Computers and Structures, 30, 887-896 (1988)
[19] Darby, C. L., Hager, W. W., and Rao, A. V. Direct trajectory optimization using a variable low-order adaptive pseudospectral method. Journal of Spacecraft and Rockets, 48, 433-445 (2011)
[20] Darby, C. L., Hager, W. W., and Rao, A. V. An hp-adaptive pseudospectral method for solving optimal control problems. Optimal Control Applications and Methods, 32, 476-502 (2011)
[21] Ross, I. M. and Fahroo, F. Pseudospectral knotting methods for solving optimal control problems. Journal of Guidance, Control, and Dynamics, 27, 397-405 (2004)
[22] Gong, Q., Fahroo, F., and Ross, I. M. Spectral algorithm for pseudospectral methods in optimal control. Journal of Guidance, Control, and Dynamics, 31, 460-471 (2008)
[23] Guo, T., Jiang, F. H., and Li, J. F. Homotopic approach and pseudospectral method applied jointly to low thrust trajectory optimization. Acta Astronautica, 71, 38-50 (2012)
[24] Fahroo, F. and Ross, I. M. Advances in pseudospectral methods for optimal control. AIAA Guidance, Navigation and Control Conference, AIAA 2008-7309, Hawaii (2008)
[25] Ding, H. L., Yang, B. E., Lou, M., and Fang, H. F. New numerical method for two-dimensional partially wrinkled membranes. AIAA Journal, 41, 125-132 (2003)
[26] Zhang, H. W., Wang, H., and Wang, J. B. Parametric variational principle based elastic-plastic analysis of materials with polygonal and Voronoi cell finite element methods. Finite Elements in Analysis and Design, 43, 206-217 (2007)
[27] Billups, A. C. and Murty, K. C. Complementarity problems. Journal of Computational and Applied Mathematics, 124, 303-318 (2000)
[28] Wright, S. J. Primal-Dual Interior-Point Methods, Society for Industrial and Applied Mathematics, Philadelphia (1997)
[29] Wen, H., Jin, D. P., and Hu, H. Y. Costate estimation for dynamic systems of the second order. Science in China Series E: Technological Sciences, 52, 752-760 (2009)
[30] Iserles, A. and Nørsett, S. P. On the solution of linear differential equations in Lie groups. Philosophical Transactions of the Royal Society A, 357, 983-1019 (1999)
[31] Hairer, E., Lubich, C., and Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin (2002)
[32] Rao, A. V., Benson, D. A., and Darby, C. GPOPS, a MATLAB software for solving multiplephase optimal control problems using the Gauss pseudospectral method. ACM Transactions on Mathematical Software, 37, 1-39 (2010)
[33] Bless, R. R. and Hodges, D. H. Finite element solution of optimal control problems with statecontrol inequality constraints. Journal of Guidance, Control, and Dynamics, 15, 1029-1032 (1992)
[34] Warner, M. S. and Hodges, D. H. Treatment of control constraints in finite element solution of optimal control problems. Journal of Guidance, Control, and Dynamics, 22, 358-360 (1999)
[35] Clohessy, W. H. and Wiltshire, R. S. Terminal guidance for satellite rendezvous. Journal of the Aerospace Sciences, 27, 653-658 (1960)
[36] Lawden, D. F. Optimal Trajectories for Space Navigation, Butterworths, London (1963)
[37] Kulkarni, J. E., Campbell, M. E., and Dullerud, G. E. Stabilization of spacecraft flight in Halo orbits: an H∞ approach. IEEE Transactions on Control Systems Technology, 14, 572-578 (2006) |