Applied Mathematics and Mechanics (English Edition) ›› 2007, Vol. 28 ›› Issue (5): 601-607 .doi: https://doi.org/10.1007/s10483-007-0505-z

• Articles • Previous Articles     Next Articles

Optimal control of nonholonomic motion planning for a free-falling cat

GE Xin-sheng, CHEN Li-qun   

    1. Mechanical Engineering Department, Beijing Institute of Machinery, Beijing 100085, P. R. China;
    2. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, P. R. China
  • Received:2005-10-18 Revised:2007-04-05 Online:2007-05-18 Published:2007-05-18
  • Contact: GE Xin-sheng

Abstract: The nonholonomic motion planning of a free-falling cat is investigated. Nonholonomicity arises in a free-falling cat subject to nonintegrable angle velocity constraints or nonintegrable conservation laws. When the total angular momentum is zero, the motion equation of a free-falling cat is established based on the model of two symmetric rigid bodies and conservation of angular momentum. The control of system can be converted to the problem of nonholonomic motion planning for a free-falling cat. Based on Ritz approximation theory, the Gauss-Newton method for motion planning by a falling cat is proposed. The effectiveness of the numerical algorithm is demonstrated through simulation on model of a free-falling cat.

Key words: optimal control, motion planning, free-falling cat, nonholonomic constraint

2010 MSC Number: 

APS Journals | CSTAM Journals | AMS Journals | EMS Journals | ASME Journals