[1] Biot, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid, I. low-frequency range. Journal of the Acoustical Society of America, 28(2), 168–178 (1956)
[2] Biot, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid, II. higher frequency range. Journal of the Acoustical Society of America, 28(2), 179–191 (1956)
[3] Biot, M. A. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33(4), 1482–1498 (1962)
[4] De Boer, R. Theory of Porous Media, Springer, Berlin (2000)
[5] Bowen, R. Incompressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 18(9), 1129–1148 (1980)
[6] Bowen, R. Compressible porous media models by use of the theory of mixtures. International Journal of Engineering Science, 20(6), 697–735 (1982)
[7] Schanz, M. and Diebels, S. A comparative study of Biot’s theory and the linear theory of porous media for wave propagation problems. Acta Mechanica, 161(3-4), 213–235 (2003)
[8] Schanz, M. Poroelastodynamics: linear models, analytical solutions, and numerical methods. Applied Mechanics Reviews, 62(3), 1–15 (2009)
[9] Carcione, J. M., Morency, C., and Santos, J. E. Computational poroelasticity— a review. Geophysics, 75, 229–243 (2010)
[10] Garg, S. K., Nayfeh, A. H., and Good, A. J. Compressional waves in fluid-saturated elastic porous media. Journal of Applied Physics, 45(5), 1968–1974 (1974)
[11] Simon, B. R., Zienkiewicz, O. C., and Paul, D. K. An analytical solution for the transient response of saturated porous elastic solids. International Journal for Numerical and Analytical Methods in Geomechanics, 8(4), 381–398 (1984)
[12] Gajo, A. and Mongiovi, L. An analytical solution for the transient response of saturated linear elastic porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 19(6), 399–413 (1995)
[13] Schanz, M. and Cheng, A. H. D. Transient wave propagation in a one-dimensional poroelastic column. Acta Mechanica, 145, 1–8 (2000)
[14] Shan, Z. D., Ling, D. S., and Ding, H. J. Exact solutions for one dimensional transient response of fluid-saturated porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 35(4), 461–479 (2011)
[15] De Boer, R., Ehlers, W. G., and Liu, Z. F. One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Archive of Applied Mechanics, 63(1), 59–72 (1993)
[16] Nakhle, H. A. Partial Differential Equations with Fourier Series and Boundary Value Problems, Person Prentice Hall, New Jersey (2004)
[17] Lubich, C. Convolution quadrature and discretized operational calculus I. Numerische Mathematik, 52, 129–145 (1988)
|