Applied Mathematics and Mechanics (English Edition) ›› 2022, Vol. 43 ›› Issue (11): 1701-1716.doi: https://doi.org/10.1007/s10483-022-2918-9
• Articles • Previous Articles Next Articles
Yu CHEN1, Junhong GUO1,2
Received:
2022-05-08
Revised:
2022-08-26
Published:
2022-10-29
Contact:
Junhong GUO, E-mail: jhguo@imut.edu.cn
Supported by:
2010 MSC Number:
Yu CHEN, Junhong GUO. Effective property of piezoelectric composites containing coated nano-elliptical fibers with interfacial debonding. Applied Mathematics and Mechanics (English Edition), 2022, 43(11): 1701-1716.
[1] WONG, E. W., SHEEHAN, P. E., and LIEBER, C. M. Nanobeam mechanics:elasticity, strength, and toughness of nanorods and nanotubes. Science, 277(5334), 1971-1975(1997) [2] TIAN, R., LIU, J. X., PAN, E., WANG, Y. S., and SOH, A. K. Some characteristics of elastic waves in a piezoelectric semiconductor plate. Journal of Applied Physics, 126(12), 125701(2019) [3] DUNN, C. M. and TAYA, M. Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. International Journal of Solids and Structures, 30(2), 161-175(1993) [4] PAK, Y. E. Circular inclusion problem in antiplane piezoelectricity. International Journal of Solids and Structures, 29(19), 2403-2419(1992) [5] CHAO, C. K. and CHANG, K. J. Interacting circular inclusions in antiplane piezoelectricity. International Journal of Solids and Structures, 136(22), 3349-3373(1999) [6] JIANG, B. and FANG, D. N. The effective properties of piezoelectric composite materials with transversely isotropic spherical inclusions. Applied Mathematics and Mechanics (English Edition), 20(4), 388-399(1999) https://doi.org/10.1007/BF02458565 [7] JIANG, C. P. and CHEUNG, Y. K. An exact solution for the three-phase piezoelectric cylinder model under antiplane shear and its applications to piezoelectric composites. International Journal of Solids and Structures, 38(28-29), 4777-4796(2001) [8] FANG, X. Q., LIU, J. X., and GUPTA, V. Fundamental formulations and recent achievements in piezoelectric nano-structures:a review. Nanoscale, 5(5), 1716-1726(2013) [9] ZHOU, K., HOH, H. J., WANG, X., KEER, L. M., PANG, J. H., SONG, B., and WANG, Q. J. A review of recent works on inclusions. Mechanics of Materials, 60, 144-158(2013) [10] GUO, J. H., ZHANG, Z. Y., and XING, Y. M. Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites. Philosophical Magazine, 96(4), 349-369(2016) [11] LOBODA, V. V., KRYVORUCHKOR, A. G., and SHEVELEVA, A. Y. Electrically plane and mechanically antiplane problem for an inclusion with stepwise rigidity between piezoelectric materials. Problems of Nonlinear Mechanics and Physics of Materials, Springer, Cham, 463-481(2019) [12] LI, G. C. and XUE, X. P. Controllability of evolution inclusions with nonlocal conditions. Applied Mathematics and Computation, 141(2-3), 375-384(2003) [13] LURIE, S., SOLYAEV, Y., and SHRAMKO, K. Comparison between the Mori-Tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity. Mechanics of Materials, 122, 133-144(2018) [14] LUBARDA, V. Circular inclusions in anti-plane strain couple stress elasticity. International Journal of Solids and Structures, 40(15), 3827-3851(2003) [15] GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291-323(1975) [16] CHEN, T. Y. Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mechanica, 196(3), 205-217(2008) [17] XIAO, J. H., XU, Y. L., and ZHANG, F. C. Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mechanica, 222(1), 59-67(2011) [18] HUANG, M. J., FANG, X. Q., LIU, J. X., FENG, W. J., and ZHAO, Y. M. Size-dependent effective properties of anisotropic piezoelectric composites with piezoelectric nano-particles. Smart Materials and Structures, 24(1), 015005(2014) [19] FANG, X. Q., HUANG, M. J., ZHU, Z. T., LIU, J. X., and FENG, W. J. Dynamic effective elastic modulus of polymer matrix composites with dense piezoelectric nano-fibers considering surface/interface effect. Science China-Physics Mechanics&Astronomy, 58(1), 1-8(2015) [20] SHAN, H. Z. and CHOU, T. W. Transverse elastic moduli of unidirectional fiber composites with fiber/matrix interfacial debonding. Composites Science and Technology, 53(4), 383-391(1995) [21] WANG, X. and PAN, E. Magnetoelectric effects in multiferroic fibrous composite with imperfect interface. Physical Review B, 76(21), 214107(2007) [22] WANG, X. and PAN, E. Two-dimensional Eshelby's problem for two imperfectly bonded piezoelectric half-planes. International Journal of Solids and Structures, 47(1), 148-160(2010) [23] LÓPEZ-REALPOZO, J. C., RODRÍGUEZ-ROMOS, R., RAÚL GUINOVART-DÍAZ, R., BRAVO-CASTILLERO, J., and SABINA, F. J. Transport properties in fibrous elastic rhombic composite with imperfect contact condition. International Journal of Mechanical Sciences, 53(2), 98-107(2011) [24] SHI, Y., WAN, Y. P., and ZHONG, Z. Effective properties of coated fibrous piezoelectric composites with spring-type interfaces under anti-plane mechanical and in-plane electrical loads. Science China-Physics Mechanics&Astronomy, 59(10), 1-8(2016) [25] WANG, Y. Z. Influences of imperfect interfaces on effective properties of multiferroic composites with coated inclusion. Mechanics Research Communications, 77, 5-11(2016) [26] TIAN, W. L., FU, M. W., QI, L. H., and RUAN, H. H. Micro-mechanical model for the effective thermal conductivity of the multi-oriented inclusions reinforced composites with imperfect interfaces. International Journal of Heat and Mass Transfer, 148, 119167(2020) [27] HERVÉ-LUANCO, E. Elastic behaviour of multiply coated fibre-reinforced composites:simplification of the (n+1)-phase model and extension to imperfect interfaces. International Journal of Solids and Structures, 196, 10-25(2020) [28] HU, K. Q., MEGUID, S. A., ZHONG, Z., and GAO, C. F. Partially debonded circular inclusion in one-dimensional quasicrystal material with piezoelectric effect. International Journal of Mechanics and Materials in Design, 16(4), 749-766(2020) [29] GAO, M. Y., YANG, B., HUANG, Y. L., and WANG, G. N. Effects of general imperfect interface/interphase on the in-plane conductivity of thermal composites. International Journal of Heat and Mass Transfer, 172, 121213(2021) [30] NGUYEN, D. H., QUANG, H. L., HE, Q. C., and TRAN, A. T. Generalized Hill-Mendel lemma and equivalent inclusion method for determining the effective thermal conductivity of composites with imperfect interfaces. Applied Mathematical Modelling, 90, 624-649(2021) [31] SHI, P. P. Imperfect interface effect for nano-composites accounting for fiber section shape under antiplane shear. Applied Mathematical Modelling, 43, 393-408(2017) [32] TIERSTEN, H. F. Linear Piezoelectric Plate Vibrations, Plenum Press, New York (1969) [33] SHI, Y., WAN, Y. P., and ZHONG, Z. Variational bounds for the effective electroelastic moduli of piezoelectric composites with electromechanical coupling spring-type interfaces. Mechanics of Materials, 72, 72-93(2014) [34] MAI, A. K. and BOSE, S. K. Dynamic elastic moduli of a suspension of imperfectly bonded spheres. Proceedings of the Cambridge Philosophical Society, 76(3), 587-600(1974) [35] RODRÍGUEZ-RAMOS, R., GUINOVART-DÍAZ, R., LOPEZ-REALPOZO, J. C., BRAVOCASTILLERO, J., OTERO, J., SABINA, F. J., and LEBON, F. Effective properties of periodic fibrous electro-elastic composites with mechanic imperfect contact condition. International Journal of Mechanical Sciences, 73, 1-13(2013) [36] GURTIN, M. E. and MURDOCH, A. I. Surface stress in solids. International Journal of Solids and Structures, 14(6), 431-440(1978) [37] HUANG, G. Y. and YU, S. W. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Physica Status Solidi (b), 243(4), R22-R24(2006) [38] HU, S. L. and SHEN, S. P. Electric field gradient theory with surface effect for nano-dielectrics. Computers, Materials&Continua (CMC), 13(1), 63(2009) [39] WANG, X. and SUDAK, L. J. A piezoelectric screw dislocation interacting with an imperfect piezoelectric bimaterial interface. International Journal of Solids and Structures, 44(10), 3344-3358(2006) [40] LÓPEZ-REALPOZO, J. C., RODRÍGUEZ-RAMOS, R., QUINTERO-ROBA, A. J., BRITOSANTANA, H., GUINOVART-DÍAZ, R., VOLNEI, T., LEBON, F., CAMACHO-MONTES, H., ESPINOSA-ALMEYDA, Y., BRAVO-CASTILLERO, J., and SABINA, F. J. Behavior of piezoelectric layered composites with mechanical and electrical non-uniform imperfect contacts. Meccanica, 55(1), 125-138(2020) [41] LI, Z. K., HE, Y. M., LEI, J., GUO, S., LIU, D. B., and WANG, L. A standard experimental method for determining the material length scale based on modified couple stress theory. International Journal of Mechanical Sciences, 141, 198-205(2014) [42] KHORSHIDI, M. A. The material length scale parameter used in couple stress theories is not a material constant. International Journal of Engineering Science, 133, 15-25(2018) [43] FANG, X. Q., HUANG, M. J., LIU, J. X., and NIE, G. Q. Electro-mechanical coupling properties of piezoelectric nanocomposites with coated elliptical nano-fibers under anti-plane shear. Journal of Applied Physics, 115(6), 064306(2014) [44] WANG, L. Y., WANG, F. C., YANG, F. Q., and WU, H. A. Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations. Science China-Physics Mechanics&Astronomy, 57(11), 2152-2160(2014) [45] WANG, Z., JIN, X. Y., CHEN, W. Q., ZHANG, C., FU, C. Q., and GONG, H. Y. Microscaled size-dependence of the effective properties of 0-3 PZT-cement composites:experiments and modeling. Composites Science and Technology, 105, 183-189(2014) [46] LI, D., WANG, F., CHAO, Y., ZHEN, Y., and ZHAO, Y. P. How to identify dislocations in molecular dynamics simulations?Science China-Physics Mechanics&Astronomy, 57(12), 2177-2187(2014) [47] JIANG, C. P., TONG, Z. H., and CHEUNG, Y. K. A generalized self-consistent method for piezoelectric fiber reinforced composites under antiplane shear. Mechanics of Materials, 33(5), 295-308(2001) [48] CHEN, T. Y. Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mechanica, 196(3), 205-217(2008) [49] XIAO, J. H., XU, Y. L., and ZHANG, F. C. A generalized self-consistent method for nano composites accounting for fiber section shape under antiplane shear. Mechanics of Materials, 81, 94-100(2015) [50] TIAN, L. and RAJAPAKSE, R. K. N. D. Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. Journal of Applied Mechanics, 74(3), 568-574(2007) [51] TANG, T., HORSTEMEYER, M., MARK, F., and WANG, P. Micromechanical analysis of influences of agglomerated nanotube interphase on effective material properties of a three-phase piezoelectric nanocomposite. Supplemental Proceedings:Materials Processing and Interfaces, 1, 307-312(2012) [52] BERGER, H., KARI, S., GABBERT, U., RODRIGUEZ-RAMOS, R., BRAVO-CASTILLERO, J., GUINOVART-DIAZ, R., SABINA, F. J., and MAUGIN, G. A. Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties. Smart Materials and Structures, 15(2), 451(2006) [53] HASANZADEH, M., ANSARI, R., and HASSANZADEH-AGHDAM, M. K. Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mechanics of Materials, 129, 63-79(2019) [54] HASHIN, Z. and ROSEN, B. W. Single-wall carbon nanotube polymer composites:investigating their percolative behavior and physical performance. ASME International Mechanical Engineering Congress and Exposition, 47004, 307-311(2004) |
[1] | Yanpeng YUE, Yongping WAN. Theoretical study on dynamic effective electroelastic properties of random piezoelectric composites with aligned inhomogeneities [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 525-546. |
[2] | Pengxu GUO, Yueting ZHOU. Exact analysis of the orientation-adjusted adhesive full stick contact of layered structures with the asymmetric bipolar coordinates [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 883-898. |
[3] | Xu WANG, P. SCHIAVONE. Thermoelectric field for a coated hole of arbitrary shape in a nonlinearly coupled thermoelectric material [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(11): 1691-1700. |
[4] | Tuoya SUN, Junhong GUO, E. PAN. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1077-1094. |
[5] | Zhina ZHAO, Junhong GUO. Surface effects on a mode-III reinforced nano-elliptical hole embedded in one-dimensional hexagonal piezoelectric quasicrystals [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 625-640. |
[6] | Pei ZHANG, Hai QING. Two-phase nonlocal integral models with a bi-Helmholtz averaging kernel for nanorods [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1379-1396. |
[7] | Yulong YANG, Weifeng YUAN, Jirui HOU, Zhenjiang YOU, Jun LI, Yang LIU. Stochastic and upscaled analytical modeling of fines migration in porous media induced by low-salinity water injection [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 491-506. |
[8] | H. SADAF. Bio-fluid flow analysis based on heat transfer and variable viscosity [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(7): 1029-1040. |
[9] | Tuoya SUN, Junhong GUO, Xiaoyan ZHANG. Static deformation of a multilayered one-dimensional hexagonal quasicrystal plate with piezoelectric effect [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(3): 335-352. |
[10] | Lihua LIU, Chaolu TEMUER. Symmetry analysis of modified 2D Burgers vortex equation for unsteady case [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 453-468. |
[11] | A. M. SIDDIQUI, T. HAROON, A. SHAHZAD. Hydrodynamics of viscous fluid through porous slit with linear absorption [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(3): 361-378. |
[12] | Ping LIU. A class of exact solutions for N-dimensional incompressible magnetohydrodynamic equations [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(2): 209-214. |
[13] | B. BIRA, T. R. SEKHAR. Exact solutions to drift-flux multiphase flow models through Lie group symmetry analysis [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1105-1112. |
[14] | M. KHAN;R. MALIK;A. ANJUM. Exact solutions of MHD second Stokes flow of generalized Burgers fluid [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(2): 211-224. |
[15] | LIU Xiao-Jing;WANG Ji-Zeng;WANG Xiao-Min;ZHOU You-He. Exact solutions of multi-term fractional diffusion-wave equations with Robin type boundary conditions [J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(1): 49-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||