Applied Mathematics and Mechanics (English Edition) ›› 2013, Vol. 34 ›› Issue (1): 97-112.doi: https://doi.org/10.1007/s10483-013-1656-6
• Articles • Previous Articles Next Articles
M. MAHMOOD, S. ASGHAR, M. A. HOSSAIN
Received:
2011-09-13
Revised:
2012-08-06
Online:
2013-01-03
Published:
2013-01-03
Contact:
M. A. HOSSAIN
E-mail:anwar@univdhaka.edu
M. MAHMOOD; S. ASGHAR; M. A. HOSSAIN. Transient mixed convection flow arising due to thermal and mass diffusion over porous sensor surface inside squeezing horizontal channel. Applied Mathematics and Mechanics (English Edition), 2013, 34(1): 97-112.
|
[1] | Hai QING, Huidiao SONG. Nonlocal stress gradient formulation for damping vibration analysis of viscoelastic microbeam in thermal environment [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 773-786. |
[2] | A. V. ROŞCA, N. C. ROŞCA, I. POP. Three-dimensional mixed convection stagnation-point flow past a vertical surface with second-order slip velocity [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 641-652. |
[3] | S. P. V. ANANTH, B. N. HANUMAGOWDA, S. V. K. VARMA, C. S. K. RAJU, I. KHAN, P. RANA. Thermo-diffusion impact on immiscible flow characteristics of convectively heated vertical two-layered Baffle saturated porous channels in a suspension of nanoparticles: an analytical study [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(2): 307-324. |
[4] | Shuguang LI, M. I. KHAN, F. ALI, S. S. ABDULLAEV, S. SAADAOUI, HABIBULLAH. Mathematical modeling of mixed convective MHD Falkner-Skan squeezed Sutterby multiphase flow with non-Fourier heat flux theory and porosity [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 2005-2018. |
[5] | Jingming FAN, Bo CHEN, Yinghui LI. Closed-form steady-state solutions for forced vibration of second-order axially moving systems [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1701-1720. |
[6] | Yaping YAN, Shuang WU, Kaiyuan TIAN, Zhenfu TIAN. Numerical simulation for 2D double-diffusive convection (DDC) in rectangular enclosures based on a high resolution upwind compact streamfunction model I: numerical method and code validation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1431-1448. |
[7] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 547-556. |
[8] | I. WAINI, A. ISHAK, I. POP. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 127-140. |
[9] | Hang XU. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 113-126. |
[10] | Kunpeng WANG, Qingxiang LI, Yuhong DONG. Transport of dissolved oxygen at the sediment-water interface in the spanwise oscillating flow [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 527-540. |
[11] | Peiliang BIAN, Hai QING. Torsional static and vibration analysis of functionally graded nanotube with bi-Helmholtz kernel based stress-driven nonlocal integral model [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 425-440. |
[12] | Pei ZHANG, Hai QING. Two-phase nonlocal integral models with a bi-Helmholtz averaging kernel for nanorods [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1379-1396. |
[13] | Yongbo LIU, Yongjun JIAN. Electromagnetohydrodynamic flows and mass transport in curved rectangular microchannels [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1431-1446. |
[14] | T. SAEED, I. A. ABBAS. Analysis of thermal responses in a two-dimensional porous medium caused by pulse heat flux [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(6): 927-938. |
[15] | Peng JIANG, Hai QING, Cunfa GAO. Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(2): 207-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||