[1] Kakaç, S. and Pramuanjaroenkij, A. Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 2, 3187-3196 (2009)
[2] Wen, D. and Ding, Y. Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (nanofluids). IEEE Transactions on Nanotechnology, 5(3), 220-227 (2006)
[3] Kulkarni, D. P., Das, D. K., and Chukwu, G. A. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). Journal of Nanoscience and Nanotechnology, 6(4), 1150-1154 (2006)
[4] Buongiorno, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240-250 (2006)
[5] Teng, T. P., Hung, Y. H., Jwo, C. S., Chen, C. C., and Jeng, L. Y. Pressure drop of TiO2 nanofluid in circular pipes. Particuology, 9, 486-491 (2011)
[6] Kim, J., Kang, Y. T., and Choi, C. K. Analysis of convective instability and heat transfer characteristics of nanofluids. Physics of Fluids, 16, 2395-2401 (2004)
[7] Tzou, D. Y. Instability of nanofluids in natural convection. Journal of Heat Transfer, 130, 072401 (2008)
[8] Tzou, D. Y. Thermal instability of nanofluids in natural convection. International Journal of Heat and Mass Transfer, 51, 2967-2979 (2008)
[9] Tzou, D. Y. and Pfautsch, E. J. Bénard instability of nanofluids. Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, 2, 467-475 (2007)
[10] Dhananjay, Y., Agrawal, G. S., and Bhargava, R. Thermal instability of rotating nanofluid layer. International Journal of Engineering Science, 49(11), 71-84 (2011)
[11] Dhananjay, Y., Agrawal, G. S., and Bhargava, R. Numerical solution of a thermal instability problem in a rotating nanofluid layer. International Journal of Heat and Mass Transfer, 63, 313- 322 (2013)
[12] Sykes, D. and Lyell, M. J. The effect of particle loading on the spatial stability of a circular jet. Physics of Fluids, 6, 1937-1939 (1994)
[13] Parthasarathy, R. N. Stability of particle-laden round jets to small disturbances. Proceedings of the ASME Fluids Engineering Division Summer Meeting 1995, American Society of Mechanical Engineers, New York, 427-434 (1995)
[14] Lin, J. Z. and Zhou, Z. X. Research on stability of moving jet containing dense suspended solid particles. Applied Mathematics and Mechanics (English Edition), 21, 1390-1400 (2000) DOI 10.1007/BF02459217
[15] DeSpirito, J. andWang, L. P. Linear instability of two-way coupled particle-laden jet. International Journal of Multiphase Flow, 27(7), 1179-1198 (2001)
[16] Chan, T. L., Bao, F. B., Lin, J. Z., Zhou, Y., and Chan, C. K. Temporal stability of a particle-laden jet. International Journal of Multiphase Flow, 34(2), 176-187 (2008)
[17] Xie, M. L., Zhou, H. C., and Zhang, Y. D. Hydrodynamics stability of Bickley jet with particle laden flow. Journal of Hydrodynamics, 21(5), 608-613 (2009)
[18] Saffman, P. G. On stability of a laminar flow of a dusty gas. Journal of Fluid Mechanics, 13, 120-128 (1962)
[19] Moler, C. B. and Stewart, G. W. An algorithm for generalized matrix eigenvalue problems. SIAM Journal on Numerical Analysis, 10(2), 241-256 (1973)
[20] Batchelor, G. K. and Gill, A. E. Analysis of the stability of axisymmetric jets. Journal of Fluid Mechanics, 14, 529-551 (1962)
[21] Michalke, A. Survey on jet instability theory. Progress in Aerospace Sciences, 21, 159-199 (1984) |