Applied Mathematics and Mechanics (English Edition) ›› 2019, Vol. 40 ›› Issue (9): 1227-1238.doi: https://doi.org/10.1007/s10483-019-2521-9
• Articles • Next Articles
Jianzhong LIN, Hailin YANG
Received:
2019-03-22
Revised:
2019-05-06
Online:
2019-09-01
Published:
2019-09-10
Contact:
Jianzhong LIN
E-mail:jzlin@sfp.zju.edu.cn
Supported by:
2010 MSC Number:
Jianzhong LIN, Hailin YANG. A review on the flow instability of nanofluids. Applied Mathematics and Mechanics (English Edition), 2019, 40(9): 1227-1238.
[1] WEN, D. and DING, Y. Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (nanofluids). IEEE Transactions on Nanotechnology, 5, 220-227(2006) [2] NAIK, S., YOU, Z. J., and BEDRIKOVETSKY, P. Rate enhancement in unconventional gas reservoirs by wettability alteration. Journal of Natural Gas Science and Engineering, 26, 1573-1584(2015) [3] KULKARNI, D. P., DAS, D. K., and CHUKWU, G. A. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). Journal of Nanoscience and Nanotechnology, 6(4), 1150-1154(2006) [4] STEELE, A., BAYER, I., ALLEN, K., and LOTH, E. Effect of carbon nanotube additives on drag reduction in pipe flows. Proceedings of the ASME Fluids Engineering Division Summer Conference, 1, 575-578(2009) [5] LIN, J. Z., XIA, Y., and KU, X. K. Pressure drop and heat transfer of nanofluid in turbulent pipe flow considering particle coagulation and breakage. Journal of Heat Transfer-Transactions of the ASME, 136, 111701(2014) [6] LIN, J. Z., XIA, Y., and KU, X. K. Friction factor and heat transfer of nanofluids containing cylindrical nanoparticles in laminar pipe flow. Journal of Applied Physics, 116, 133513(2014) [7] SHEREMET, M. A., TRIMBITAS, R., GROSAN, T., and POP, I. Natural convection of an alumina-water nanofluid inside an inclined wavy-walled cavity with a non-uniform heating using Tiwari and Das' nanofluid model. Applied Mathematics and Mechanics (English Edition), 39(10), 1425-1436(2018) https://doi.org/10.1007/s10483-018-2377-7 [8] LIN, J. Z., XIA, Y., and KU, X. K. Flow and heat transfer characteristics of nanofluids containing rod-like particles in a turbulent pipe flow. International Journal of Heat and Mass Transfer, 93(1), 57-66(2016) [9] XIONG, X. P., CHEN, S., and YANG, B. Natural convection of SiO2-water nanofluid in square cavity with thermal square column. Applied Mathematics and Mechanics (English Edition), 38(4), 585-602(2017) https://doi.org/10.1007/s10483-017-2183-6 [10] BUONGIORNO, J. Convective transport in nanofluids. ASME Journal of Heat Transfer, 128, 240-250(2006) [11] TENG, T. P., HUNG, Y. H., JWO, C. S., CHEN, C. C., and JENG, L. Y. Pressure drop of TiO2 nanofluid in circular pipes. Particuology, 9, 486-491(2011) [12] NAYAK, A. K., GARTIA, M. R., and VIJAYAN, P. K. An experimental investigation of singlephase natural circulation behavior in a rectangular loop with Al2O3 nanofluids. Experimental Thermal and Fluid Science, 33(1), 184-189(2008) [13] NAYAK, A. K., GARTIA, M. R., and VIJAYAN, P. K. Thermal-hydraulic characteristics of a single-phase natural circulation loop with water and Al2O3 nanofluids. Nuclear Engineering and Design, 239(3), 526-540(2009) [14] LIN, J. Z., XIA, Y., and BAO, F. B. Hydrodynamic instability of nanofluids in a channel flow. Fluid Dynamics Research, 46, 055512(2014) [15] XIA, Y., LIN, J. Z., BAO, F. B., and CHAN, T. L. Flow instability of nanofuilds in jet. Applied Mathematics and Mechanics (English Edition), 36(2), 141-152(2015) https://doi.org/10.1007/s10483-015-1939-7 [16] PARTHASARATHY, R. N. Stability of particle-laden round jets to small disturbances. Journal of Heat Transfer-Transactions of the ASME, 228, 427-434(1995) [17] AVRAMENKO, A. A., TYRINOV, A. I., SHEVCHUK, I. V., and DMITRENKO, N. P. Centrifugal instability of nanofluids with radial temperature and concentration non-uniformity between co-axial rotating cylinders. European Journal of Mechanics B/Fluids, 60, 90-98(2016) [18] AVRAMENKO, A. A., TYRINOV, A. I., SHEVCHUK, I. V., and DMITRENKO, N. P. Dean instability of nanofluids with radial temperature and concentration non-uniformity. Physics of Fluids, 28, 034104(2016) [19] RUDYAK, V. Y. and BORD, E. G. On stability of plane and cylindrical Poiseuille flows of nanofluids. Journal of Applied Mechanics and Technical Physics, 58(6), 1013-1020(2017) [20] HOSSAIN, M. M. and KHAN, M. A. H. Stability analysis of wall driven nanofluid flow through a tube. AIP Conference Proceedings, 1851, 020024(2014) [21] MOATIMID, G. M., ALALI, E. M. M., and ALI, H. S. M. Nonlinear instability of an Oldroyd elastico-viscous magnetic nanofluid saturated in a porous medium. Physics of Plasmas, 21(9), 092113(2014) [22] RUDYAK, V. Y., MINAKOV, A. V., GUZEY, D. V., ZHIGAREV, V. A., and PRYAZHNIKOV, M. I. On laminar-turbulent transition in nanofluid flows. Thermophysics and Aeromechanics, 23(5), 773-776(2016) [23] DASTVAREH, B. and AZAIEZ, J. Instabilities of nanofluid flow displacements in porous media. Physics of Fluids, 29, 044101(2017) [24] KIM, J., KANG, Y. T., and CHOI, C. K. Analysis of convective instability and heat transfer characteristics of nanofluids. Physics of Fluid, 16, 2395(2004) [25] TZOU, D. Y. and PFAUTSCH, E. J. Bénard instability of nanofluids. Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, 2, 467-475(2007) [26] TZOU, D. Y. Thermal instability of nanofluids in natural convection. International Journal of Heat and Mass Transfer, 51, 2967-2979(2008) [27] NIELD, D. A. and KUZNETSOV, A. V. Thermal instability in a porous medium layer saturated by a nanofluid. International Journal of Heat and Mass Transfer, 52(25-26), 5796-5801(2009) [28] YADAV, D., AGRAWAL, G. S., and BHARGAVA, R. Rayleigh-Bénard convection in nanofluid. International Journal of Applied Mathematics and Mechanics, 7, 61-76(2011) [29] NIELD, D. A. and KUZNETSOV, A. V. The onset of convection in a horizontal nanofluid layer of finite depth. European Journal of Mechanics B-Fluids, 29, 217-223(2010) [30] NIELD, D. A. and KUZNETSOV, A. V. The onset of double-diffusive convection in a nanofluid layer. International Journal of Heat Fluid Flow, 32, 771-776(2011) [31] YADAV, D., AGRAWAL, G. S., and BHARGAVA, R. Thermal instability of rotating nanofluid layer. International Journal of Engineering Science, 49, 1171-1184(2011) [32] TZOU, D. Y. Instability of nanofluids in natural convection. Journal of Heat Transfer-Transactions of the ASME, 130, 072401(2008) [33] KANG, J. H., ZHOU, F. B., TAN, W. C., and XIA, T. Q. Thermal instability of a nonhomogeneous power-law nanofluid in a porous layer with horizontal through flow. Journal of Non-Newtonian Fluid Mechanics, 213, 50-56(2014) [34] GOVENDER, S. Thermal instability of convection in a rotating nanofluid saturated porous layer placed at a finite distance from the axis of rotation. Journal of Heat Transfer, 138, 102402(2016) [35] YADAV, D., BHARGAVA, R., and AGRAWAL, G. S. Numerical solution of a thermal instability problem in a rotating nanofluid layer. International Journal of Heat and Mass Transfer, 63, 313-322(2013) [36] YU, L., SUR, A., and LIU, D. Flow boiling heat transfer and two-phase flow instability of nanofluids in a minichannel. Journal of Heat Transfer, 137, 051502(2015) [37] AGARWAL, S. and BHADAURIA, B. S. Unsteady heat and mass transfer in a rotating nanofluid layer. Continuum Mechanics and Thermodynamics, 26(4), 437-445(2014) [38] YADAV, D., AGRAWAL, G. S., and LEE, J. Thermal instability in a rotating nanofluid layer:a revised model. Ain Shams Engineering Journal, 7(1), 431-440(2016) [39] KAHVECI, K. Stability of unsteady mixed convection in a horizontal concentric annulus. Journal of Applied Fluid Mechanics, 9(5), 2141-2147(2016) [40] DAS, S., SENSHARMA, A., JANA, R. N., and SHARMA, R. P. Stability of nanofluid flow through a vertical channel with wall thermal conductance and radiation. Journal of Nanofluids, 6(4), 680-691(2017) [41] KIRAN, P. and NARASIMHULU, Y. Centrifugally driven convection in a nanofluid saturated rotating porous medium with modulation. Journal of Nanofluids, 6(3), 513-523(2017) [42] ZHANG, L., LI, Y. R., and ZHANG, J. M. Numerical simulation of Rayleigh-Benard convection of nanofluids in rectangular cavities. Journal of Mechanical Science and Technology, 31(8), 4043-4050(2017) [43] WAKI, A., BOULAHIA, Z., MISHRA, S. R., RASHIDI, M. M., and SEHAQUI, R. Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno's mathematical model. European Physical Journal Plus, 133(5), 181(2018) [44] WAKI, A., BOULAHIA, Z., and SEHAQUI, R. A semi-analytical analysis of electro-thermohydrodynamic stability in dielectric nanofluids using Buongiorno's mathematical model together with more realistic boundary conditions. Results in Physics, 9, 1438-1454(2018) [45] DASTVAREH, B. and AZAIEZ, J. Thermophoretic effects on instabilities of nanoflows in porous media. Journal of Fluid Mechanics, 857, 173-199(2018) [46] ZARGARTALEBI, M. and AZAIEZ, J. Mesoscopic study of miscible nanoflow instabilities. Physics of Fluids, 30, 024105(2018) [47] AKBARZADEH, P. and MAHIAN, O. The onset of nanofluid natural convection inside a porous layer with rough boundaries. Journal of Molecular Liquids, 272, 344-352(2018) [48] MAHAJAN, A. and SHARMA, M. K. The onset of convection in a magnetic nanofluid layer with variable gravity effects. Applied Mathematics and Computation, 339, 622-635(2018) |
[1] | N. HUMNEKAR, D. SRINIVASACHARYA. Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 563-580. |
[2] | C. G. PAVITHRA, B. J. GIREESHA, M. L. KEERTHI. Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 197-216. |
[3] | L. ANITHA, B. J. GIREESHA. Convective flow of Jeffrey nanofluid along an upright microchannel with Hall current and Buongiorno model: an irreversibility analysis [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1613-1628. |
[4] | B. K. SHARMA, R. GANDHI, T. ABBAS, M. M. BHATTI. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 459-476. |
[5] | S. P. V. ANANTH, B. N. HANUMAGOWDA, S. V. K. VARMA, C. S. K. RAJU, I. KHAN, P. RANA. Thermo-diffusion impact on immiscible flow characteristics of convectively heated vertical two-layered Baffle saturated porous channels in a suspension of nanoparticles: an analytical study [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(2): 307-324. |
[6] | Shuguang LI, M. I. KHAN, F. ALI, S. S. ABDULLAEV, S. SAADAOUI, HABIBULLAH. Mathematical modeling of mixed convective MHD Falkner-Skan squeezed Sutterby multiphase flow with non-Fourier heat flux theory and porosity [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 2005-2018. |
[7] | Qingkai ZHAO, Longbin TAO, Hang XU. Analysis of periodic pulsating nanofluid flow and heat transfer through a parallel-plate channel in the presence of magnetic field [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1957-1972. |
[8] | A. M. ALSHARIF, A. I. ABDELLATEEF, Y. A. ELMABOUD, S. I. ABDELSALAM. Performance enhancement of a DC-operated micropump with electroosmosis in a hybrid nanofluid: fractional Cattaneo heat flux problem [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 931-944. |
[9] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 547-556. |
[10] | S. HUSSAIN, T. TAYEBI, T. ARMAGHANI, A. M. RASHAD, H. A. NABWEY. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 447-466. |
[11] | Weipeng HU, Zhen WANG, Yulu HUAI, Xiqiao FENG, Wenqi SONG, Zichen DENG. Effects of temperature change on the rheological property of modified multiwall carbon nanotubes [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(10): 1503-1514. |
[12] | I. WAINI, A. ISHAK, I. POP. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 127-140. |
[13] | Hang XU. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 113-126. |
[14] | H. V. TUNG, L. T. N. TRANG. Nonlinear stability of advanced sandwich cylindrical shells comprising porous functionally graded material and carbon nanotube reinforced composite layers under elevated temperature [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(9): 1327-1348. |
[15] | J. K. MADHUKESH, G. K. RAMESH, B. C. PRASANNAKUMARA, S. A. SHEHZAD, F. M. ABBASI. Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1191-1204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||