[1] WANG, X. Y., CHENG, C., WANG, S. L., and LIU, S. R. Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluidics, 6, 145-162(2009) [2] ZHAO, Q. K., XU, H., and TAO, L. B. Flow and heat transfer of nanofluid through a horizontal microchannel with magnetic field and interfacial electrokinetic effects. European Journal of Mechanics-B/Fluids, 80, 72-79(2020) [3] AWAN, A. U., HISHAM, M. D., and RAZA, N. The effect of slip on electro-osmotic flow of a second-grade fluid between two plates with Caputo-Fabrizio time fractional derivatives. Canadian Journal of Physics, 97, 509-516(2018) [4] ALSHARIF, A. M. and ABD-ELMABOUD, Y. Electroosmotic flow of generalized fractional second grade fluid with fractional Cattaneo model through a vertical annulus. Chinese Journal of Physics, 77, 1015-1028(2021) [5] ABDELLATEEF, A. I., ALSHEHRI, H. M., and ABD-ELMABOUD, Y. Electro-osmotic flow of fractional second-grade fluid with fractional Cattaneo heat flux through a vertical microchannel. Heat Transfer, 50, 6628-6644(2021) [6] DEY, P. and SHIT, G. C. Electroosmotic flow of a fractional second-grade fluid with interfacial slip and heat transfer in the microchannel when exposed to a magnetic field. Heat Transfer, 50, 2643-2666(2021) [7] WANG, X. P., QI, H. T., YU, B., XIONG, Z., and XU, H. Y. Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids. Communications in Nonlinear Science and Numerical Simulation, 50, 77-87(2017) [8] WANG, S. W., ZHAO, M. L., LI, X. C., CHEN, X., and GE, Y. H. Exact solutions of electroosmotic flow of generalized second-grade fluid with fractional derivative in a straight pipe of circular cross section. Zeitschrift für Naturforschung A, 69, 697-704(2014) [9] ABDELSALAM, S. I., VELASCO-HERNÁDEZ, J. X., and ZAHER, A. Z. Electromagnetically modulated self-propulsion of swimming sperms via cervical canal. Biomechanics and Modeling in Mechanobiology, 20, 861-878(2021) [10] ABDELSALAM, S. I. and ZAHER, A. Z. Leveraging elasticity to uncover the role of Rabinowitsch suspension through a wavelike conduit:consolidated blood suspension application. Mathematics, 9, 1-25(2021) [11] BHATTI, M. M. and ABDELSALAM, S. I. Bio-inspired peristaltic propulsion of hybrid nanofluid flow with tantalum (Ta) and gold (Au) nanoparticles under magnetic effects. Waves in Random and Complex Media (2021) https://doi.org/10.1080/17455030.2021.1998728 [12] BHATTI, M. M. and ABDELSALAM, S. I. Thermodynamic entropy of a magnetized Ree-Eyring particle-fluid motion with irreversibility process:a mathematical paradigm. ZAMM -Zeitschrift für Angewandte Mathematik und Mechanik, 101, e202000186(2021) [13] QI, H. T., XU, H. Y., and GUO, X. W. The Cattaneo-type time fractional heat conduction equation for laser heating. Computers and Mathematics with Applications, 66, 824-831(2013) [14] XU, G. Y. and WANG, J. B. Analytical solution of time fractional Cattaneo heat equation for finite slab under pulse heat flux. Applied Mathematics and Mechanics (English Edition), 39(10), 1465-1476(2018) https://doi.org/10.1007/s10483-018-2375-8 [15] XU, X. Y., QI, H. T., and JIANG, X. X. Fractional Cattaneo heat equation in a semi-infinite medium. Chinese Physics B, 22, 0114401(2013) [16] ANANTHA-KUMAR, K., RAMANA-REDDY, J. V., SUGUNAMMA, V., and SANDEEP, N. MHD Carreau fluid flow past a melting surface with Cattaneo-Christov heat flux. Applied Mathematics and Scientific Computing. Trends in Mathematics, Birkhäuser, Cham (2019) [17] RAMANDEVI, B., RAMANA-REDDY, J. V., SUGUNAMMA, V., and SANDEEP, N. Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux. Alexandria Engineering Journal, 57, 1009-1018(2018) [18] ANANTHA-KUMAR, K., RAMANA-REDDY, J. V., SUGUNAMMA, V., and SANDEEP, N. Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink. Alexandria Engineering Journal, 57, 435-443(2018) [19] TRIPATHI, D., PRAKASH, J., TIWARI, A. K., and ELLAHI, R. Thermal, microrotation, electromagnetic field and nanoparticle shape effects on Cu-CuO/blood flow in microvascular vessels. Microvascular Research, 132, 104065(2020) [20] ELELAMY, A. F., ELGAZERY, N. S., and ELLAHI, R. Blood flow of MHD non-Newtonian nanofluid with heat transfer and slip effects:application of bacterial growth in heart valve. International Journal of Numerical Methods for Heat & Fluid Flow, 30, 4883-4908(2020) [21] RIAZ, A., BOBESCU, E., RAMESH, K., and ELLAHI, R. Entropy analysis for cilia-generated motion of Cu-blood flow of nanofluid in an annulus. Symmetry, 13, 2358(2021) [22] KHAN, U., SHAFIQ, A., ZAIB, A., and BALEANU, D. Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects. Case Studies in Thermal Engineering, 21, 100660(2020) [23] CHRISTOPHER, A. J., MAGESH, N., GOWDA, R. J. P., KUMAR, R. N., and KUMAR, R. S. V. Hybrid nanofluid flow over a stretched cylinder with the impact of homogeneous-heterogeneous reactions and Cattaneo-Christov heat flux:series solution and numerical simulation. Heat Transfer, 50, 3800-3821(2021) [24] EL-MASRY, Y., ABD-ELMABOUD, Y., and ABDEL-SATTAR, M. A. Direct current/alternating current magnetohydrodynamic micropump of a hybrid nanofluid through a vertical annulus with heat transfer. Journal of Thermal Science and Engineering Applications, 12, 044501(2020) [25] EZZAT, M. A. Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Physica B, 405, 4188-4194(2010) [26] ABD-ELMABOUD, Y. Electroosmotic flow of generalized Burgers' fluid with Caputo-fabrizio derivatives through a vertical annulus with heat transfer. Alexandria Engineering Journal, 59, 4563-4575(2020) |