[1] CHOI, S. U. S. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 International Mechanical Engineering Congress and Exposition, ASME, San Francisco, 66, 99-105(1995) [2] HAYAT, T., KHAN, M. I., FAROOQ, M., ALSAEDI, A., and YASMEEN, T. Impact of Marangoni convection in the flow of carbon-water nanofluid with thermal radiation. International Journal of Heat and Mass Transfer, 106, 810-815(2017) [3] KUZNETSOV, A. V. and NIELD, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49, 243-247(2010) [4] MEBAREK-OUDINA, F. Convective heat transfer of titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transfer-Asian Research, 48, 135-147(2019) [5] BERREHAL, H., MABOOD, F., and MAKINDE, O. D. Entropy-optimized radiating water/FCNTs nanofluid boundary-layer flow with convective condition. The European Physical Journal Plus, 135, 1-21(2020) [6] AHMED, A., KHAN, M., and AHMED, J. Thermal analysis in swirl motion of Maxwell nanofluid over a rotating circular cylinder. Applied Mathematics and Mechanics (English Edition), 41(9), 1417-1430(2020) https://doi.org/10.1007/s10483-020-2643-7 [7] RANA, P., SHEHZAD, S. A., AMBREEN, T., and SELIM, M. M. Numerical study based on CVFEM for nanofluid radiation and magnetized natural convected heat transportation. Journal of Molecular Liquids, 334, 116102(2021) [8] CHU, Y., KHAN, M. I., REHMAN, M. I. U., KADRY, S., QAYYUM, S., and WAQAS, M. Stability analysis and modeling for the three-dimensional Darcy-Forchheimer stagnation point nanofluid flow towards a moving surface. Applied Mathematics and Mechanics (English Edition), 42(3), 357-370(2021) https://doi.org/10.1007/s10483-021-2700-7 [9] MAHANTHESH, B., SHASHIKUMAR, N. S., and LORENZINI, G. Heat transfer enhancement due to nanoparticles, magnetic field, thermal and exponential space-dependent heat source aspects in nanoliquid flow past a stretchable spinning disk. Journal of Thermal Analysis and Calorimetry, 145, 3339-3347(2021) [10] SURESH, S., VENKITARAJ, K. P., SELVAKUMAR, P., and CHANDRASEKAR, M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 388, 41-48(2011) [11] WAINI, I., ISHAK, A., and POP, I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International Journal of Heat and Mass Transfer, 136, 288-297(2019) [12] MASKEEN, M. M., ZEESHAN, A., MEHMOOD, O. U., and HASSAN, M. Heat transfer enhancement in hydromagnetic alumina-copper/water hybrid nanofluid flow over a stretching cylinder. Journal of Thermal Analysis and Calorimetry, 138, 1127-1136(2019) [13] ALADDIN, N. A. L., BACHOK, N., and POP, I. Cu-Al2O3/water hybrid nanofluid flow over a permeable moving surface in presence of hydromagnetic and suction effects. Alexandria Engineering Journal, 59, 657-666(2020) [14] MEHRYAN, S. A., KASHKOOLI, F. M., GHALAMBAZ, M., and CHAMKHA, A. J. Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Advanced Powder Technology, 28, 2295-2305(2017) [15] SHAH, N. A., ANIMASAUN, I. L., WAKIF, A., KORIKO, O. K., SIVARAJ, R., ADEGBIE, K. S., and PRASAD, K. V. Significance of suction and dual stretching on the dynamics of various hybrid nanofluids:comparative analysis between type I and type II models. Physica Scripta, 95, 095205(2020) [16] WAQAS, H., FAROOQ, U., ALGHAMDI, M., MUHAMMAD, T., and ALSHOMRANI, A. S. On the magnetized 3D flow of hybrid nanofluids utilizing nonlinear radiative heat transfer. Physica Scripta, 96, 095202(2021) [17] BHATTI, M. M., ABBAS, T., RASHIDI, M. M., and ALI, M. E. S. Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet. Entropy, 18, 200(2016) [18] SHAH, Z., DAWAR, A., KUMAM, P., KHAN, W., and ISLAM, S. Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk. Applied Sciences, 9, 1533(2019) [19] QURESHI, M. A. Numerical simulation of heat transfer flow subject to MHD of Williamson nanofluid with thermal radiation. Symmetry, 13, 10(2021) [20] MAMOURIAN, M., SHIRVAN, K. M., and MIRZAKHANLARI, S. Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by response surface methodology. Energy, 109, 49-61(2016) [21] BIJAN, D. SAMAN, R., and JAVAD, A. E. Sensitivity analysis of entropy generation in nanofluid flow inside a channel by response surface methodology. Entropy, 18, 52(2016) [22] MACKOLIL, J. and MAHANTHESH, B. Inclined magnetic field and nanoparticle aggregation effects on thermal Marangoni convection in nanoliquid:a sensitivity analysis. Chinese Journal of Physics, 69, 24-37(2021) [23] MACKOLIL, J. and MAHANTHESH, B. Heat transfer enhancement using temperature-dependent effective properties of alumina-water nanoliquid with thermo-solutal Marangoni convection:a sensitivity analysis. Applied Nanoscience (2021) https://doi.org.10.1007/s13204-020-01631-4 [24] SHAMPINE, L. F. and KIERZENKA, J. A BVP solver that controls residual and error. Journal of Numerical Analysis, Industrial and Applied Mathematics, 3, 27-41(2008) [25] ARIFIN, N. M., NAZAR, R., and POP, I. Non-isobaric Marangoni boundary layer flow for Cu, Al2O3 and TiO2 nanoparticles in a water-based fluid. Meccanica, 46, 833-843(2011) |