Applied Mathematics and Mechanics (English Edition) ›› 2020, Vol. 41 ›› Issue (9): 1401-1416.doi: https://doi.org/10.1007/s10483-020-2642-6
• Articles • Previous Articles Next Articles
N. A. ZAINAL1,2, R. NAZAR1, K. NAGANTHRAN1, I. POP3
Received:
2020-02-08
Revised:
2020-05-20
Published:
2020-08-27
Contact:
R. NAZAR
E-mail:rmn@ukm.edu.my
2010 MSC Number:
N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Impact of anisotropic slip on the stagnation-point flow past a stretching/shrinking surface of the Al2O3-Cu/H2O hybrid nanofluid. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1401-1416.
[1] ZHENG, Y., AHMED, N. A., and ZHANG, W. Heat dissipation using minimum counter flow jet ejection during spacecraft re-entry. Procedia Engineering, 49, 271-279(2012) [2] FISHER, E. Extrusion of Plastics, Wiley, New York (1976) [3] RAUWENDAAL, C. Polymer Extrusion, Hanser Publications, Cincinnati (2001) [4] HIEMENZ, K. Die Grenzschicht an einem in den gleichförmingen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Politech Journal, 326, 321-324(1911) [5] HOMANN, F. Der Einfluss grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel. Zeitschrift für Angewandte Mathematik und Mechanik, 16, 153-164(1936) [6] HOWARTH, L. The boundary layer in three dimensional flow-part II, the flow near a stagnation point. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42, 1433-1440(1951) [7] CHIAM, T. C. Stagnation-point flow towards a stretching plate. Journal of the Physical Society of Japan, 63, 2443-2444(1994) [8] FAN, T., XU, H., and POP, I. Unsteady stagnation flow and heat transfer towards a shrinking sheet. International Communications in Heat and Mass Transfer, 37, 1440-1446(2010) [9] LOK, Y. Y., AMIN, N., and POP, I. Non-orthogonal stagnation point flow towards a stretching sheet. International Journal of Non-Linear Mechanics, 41, 622-627(2006) [10] MAHAPATRA, T. R. and GUPTA, A. S. Heat transfer in stagnation-point flow towards a stretching sheet. Heat and Mass Transfer, 38, 517-521(2002) [11] WANG, C. Y. Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics, 43, 377-382(2008) [12] CHOI, C. H. and KIM, C. J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Physical Review Letters, 96, 1-4(2006) [13] WANG, C. Y. Flow over a surface with parallel grooves. Physics of Fluids, 15, 1114-1121(2003) [14] SHARIPOV, F. and SELEZNEV, V. Data on internal rarefied gas flows. Journal of Physical and Chemical Reference Data, 27, 657-706(1998) [15] HAFIDZUDDIN, E. H., NAZAR, R., ARIFIN, N. M., and POP, I. Effects of anisotropic slip on three-dimensional stagnation-point flow past a permeable moving surface. European Journal of Mechanics-B/Fluids, 65, 515-521(2017) [16] NAVIER, C. L. Mémorie sur les lois du lois du mouvement des fluides. Mémoires de l'Académie (royale) des Sciences de l'Institut de France, 6, 298-440(1827) [17] MAXWELL, J. On stresses in rarefied gases arising from inequalities of temperature. Philosophical Transactions of the Royal Society, 170, 231-256(1879) [18] WANG, C. Y. Stagnation flows with slip:exact solutions of the Navier-Stokes equations. Zeitschrift für Angewandte Mathematik und Physik, 54, 184-189(2003) [19] WANG, C. Y. Stagnation slip flow and heat transfer on a moving plate. Chemical Engineering Science, 61, 7668-7672(2006) [20] RAO, I. J. and RAJAGOPAL, K. R. Effect of the slip boundary condition on the flow of fluids in a channel. Acta Mechanica, 135, 113-126(1999) [21] JUSOH, R., NAZAR, R., and POP, I. Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip:a revised model. Physics of Fluids, 30, 033604(2018) [22] SOID, S. K., ISHAK, A., and POP, I. MHD stagnation-point flow over a stretching/shrinking sheet in a micropolar fluid with a slip boundary. Sains Malaysiana, 47, 2907-2916(2018) [23] AZIZ, A. and JAMSHED, W. Unsteady mhd slip flow of non Newtonian Power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete and Continuos Dynamical Systems-Series S, 11, 617-630(2018) [24] NAGANTHRAN, K. and NAZAR, R. Effects of thermal radiation and slip on unsteady stagnationpoint flow and heat transfer past a permeable shrinking sheet:a stability analysis. AIP Conference Proceedings, 2184, 060032(2019) [25] JAMSHED, W. and AZIZ, A. A comparative entropy based analysis of Cu and Fe3O4/methanol Powell-Eyring nanofluid in solar thermal collectors subjected to thermal radiation, variable thermal conductivity and impact of different nanoparticles shape. Results in Physics, 9, 195-205(2018) [26] AZIZ, A., JAMSHED, W., and AZIZ, T. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity. Open Physics, 16, 123-136(2018) [27] JAMALUDIN, A., NAZAR, R., and POP, I. Non-uniqueness of solutions to an MHD stagnationpoint flow over an exponentially permeable stretching/shrinking sheet with velocity slip. Journal of Physics:Conference Series, 1366, 012040(2019) [28] MAHMOOD, A., AZIZ, A., JAMSHED, W., and HUSSAIN, S. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity. Results in Physics, 7, 3425-3433(2017) [29] WANG, C. Y. Stagnation flow on a plate with anisotropic slip. European Journal of MechanicsB/Fluids, 38, 73-77(2013) [30] BELYAEV, A. V. and VINOGRADOVA, O. I. Electro-osmosis on anisotropic superhydrophobic surfaces. Physical Review Letters, 107, 1-4(2011) [31] JUNG, T., CHOI, H., and KIM, J. Effects of the air layer of an idealized superhydrophobic surface on the slip length and skin-friction drag. Journal of Fluid Mechanics, 790, R11-R112(2016) [32] PEARSON, J. T., BILODEAU, D., and MAYNES, D. Two-pronged jet formation caused by droplet impact on anisotropic superhydrophobic surfaces. Journal of Fluids Engineering, 138, 2-6(2016) [33] RAEES, A., RAEES-UL-HAQ, M., XU, H., and SUN, Q. Three-dimensional stagnation flow of a nanofluid containing both nanoparticles and microorganisms on a moving surface with anisotropic slip. Applied Mathematical Modelling, 40, 4136-4150(2016) [34] RASHAD, A. M. Unsteady nanofluid flow over an inclined stretching surface with convective boundary condition and anisotropic slip impact. International Journal of Heat and Technology, 35, 82-90(2017) [35] AL-BALUSHI, L. M., RAHMAN, M. M., and POP, I. Three-dimensional axisymmetric stagnationpoint flow and heat transfer in a nanofluid with anisotropic slip over a striated surface in the presence of various thermal conditions and nanoparticle volume fractions. Thermal Science and Engineering Progress, 2, 26-42(2017) [36] ANUAR, N. S., BACHOK, N., and POP, I. A stability analysis of solutions in boundary layer flow and heat transfer of carbon nanotubes over a moving plate with slip effect. Energies, 11, 3243(2018) [37] SADIQ, M. A. MHD Stagnation point flow of nanofluid on a plate with anisotropic slip. Symmetry, 11, 132(2019) [38] KHASHI'IE, N. S., ARIFIN, N. M., NAZAR, R., HAFIDZUDDIN, E. H., WAHI, N., and POP, I. A stability analysis for magnetohydrodynamics stagnation point flow with zero nanoparticles flux condition and anisotropic slip. Energies, 12, 1268(2019) [39] ISHAK, A., NAZAR, R., and POP, I. Flow and heat transfer characteristics on a moving flat plate in a parallel stream with constant surface heat flux. Heat and Mass Transfer, 45, 563-567(2009) [40] DAS, K. Radiation and melting effects on MHD boundary layer flow over a moving surface. Ain Shams Engineering Journal, 5, 1207-1214(2014) [41] SAKIADIS, B. C. Boundary-layer behavior on continuous solid surfaces:I, boundary-layer equations for two-dimensional and axisymmetric flow. AIChE Journal, 7, 26-28(1961) [42] CRANE, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik, 21, 647-647(1970) [43] MIKLAVČIČ, M. and WANG, C. Y. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics, 64, 283-290(2006) [44] MAHABALESHWAR, U. S., VINAY KUMAR, P. N., and SHEREMET, M. Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction. SpringerPlus, 5, 1901(2016) [45] DEVI, S. U. and DEVI, S. P. A. Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet. Journal of the Nigerian Mathematical Society, 36, 419-433(2017) [46] HAYAT, T., NADEEM, S., and KHAN, A. U. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. The European Physical Journal E, 41, 75(2018) [47] SURESH, S., VENKITARAJ, K. P., SELVAKUMAR, P., and CHANDRASEKAR, M. Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science, 38, 54-60(2012) [48] CHAMKHA, A. J., MIROSHNICHENKO, I. V., and SHEREMET, M. A. Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity. Journal of Thermal Science and Engineering Applications, 9, 041004(2017) [49] ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Unsteady three-dimensional MHD non-axisymmetric Homann stagnation point flow of a hybrid nanofluid with stability analysis. Mathematics, 8, 784(2020) [50] WAINI, I., ISHAK, A., and POP, I. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Applied Mathematics and Mechanics (English Edition), 41(3), 507-520(2020) https://doi.org/10.1007/s10483-020-2584-7 [51] DEVI, S. S. U. and DEVI, S. P. Numerical investigation of three-dimensional hybrid CuAl2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Canadian Journal of Physics, 94, 490-496(2016) [52] OZTOP, H. F. and ABU-NADA, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29, 1326-1336(2008) [53] MERKIN, J. H. Mixed convection boundary layer flow on a vertical surface in a saturated porous medium. Journal of Engineering Mathematics, 14, 301-313(1980) [54] MERRILL, K., BEAUCHESNE, M., PREVITE, J., PAULLET, J., and WEIDMAN, P. Final steady flow near a stagnation point on a vertical surface in a porous medium. International Journal of Heat and Mass Transfer, 49, 4681-4686(2006) [55] WEIDMAN, P. D., KUBITSCHEK, D. G., and DAVIS, A. M. J. The effect of transpiration on selfsimilar boundary layer flow over moving surfaces. International Journal of Engineering Science, 44, 730-737(2006) [56] HARRIS, S. D., INGHAM, D. B., and POP, I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium:Brinkman model with slip. Transport in Porous Media, 77, 267-285(2009) [57] SHAMPINE, L. F., GLADWELL, I., and THOMPSON, S. Solving ODEs with Matlab, Cambridge University Press, Cambridge (2003) [58] BRINKMAN, H. C. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 20, 571-581(1952) |
[1] | C. G. PAVITHRA, B. J. GIREESHA, M. L. KEERTHI. Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 197-216. |
[2] | B. K. SHARMA, R. GANDHI, T. ABBAS, M. M. BHATTI. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 459-476. |
[3] | A. M. ALSHARIF, A. I. ABDELLATEEF, Y. A. ELMABOUD, S. I. ABDELSALAM. Performance enhancement of a DC-operated micropump with electroosmosis in a hybrid nanofluid: fractional Cattaneo heat flux problem [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 931-944. |
[4] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 547-556. |
[5] | S. HUSSAIN, T. TAYEBI, T. ARMAGHANI, A. M. RASHAD, H. A. NABWEY. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 447-466. |
[6] | I. WAINI, A. ISHAK, I. POP. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 127-140. |
[7] | Hang XU. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 113-126. |
[8] | J. MACKOLIL, B. MAHANTHESH. Optimization of heat transfer in the thermal Marangoni convective flow of a hybrid nanomaterial with sensitivity analysis [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1663-1674. |
[9] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Unsteady flow of a Maxwell hybrid nanofluid past a stretching/shrinking surface with thermal radiation effect [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1511-1524. |
[10] | C. REVNIC, T. GROŞAN, M. SHEREMET, I. POP. Numerical simulation of MHD natural convection flow in a wavy cavity filled by a hybrid Cu-Al2O3-water nanofluid with discrete heating [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1345-1358. |
[11] | M. KHAN, J. AHMED, F. SULTANA, M. SARFRAZ. Non-axisymmetric Homann MHD stagnation point flow of Al2O3-Cu/water hybrid nanofluid with shape factor impact [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(8): 1125-1138. |
[12] | M. KHAN, M. SARFRAZ, J. AHMED, L. AHMAD, C. FETECAU. Non-axisymmetric Homann stagnation-point flow of Walter's B nanofluid over a cylindrical disk [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(5): 725-740. |
[13] | I. WAINI, A. ISHAK, I. POP. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 507-520. |
[14] | T. HAYAT, A. SHAFIQ, A. ALSAEDI, S. A. SHAHZAD. Unsteady MHD flow over exponentially stretching sheet with slip conditions [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(2): 193-208. |
[15] |
T. HAYAT, T. MUHAMMAD, S. A. SHEHZAD, A. ALSAEDI.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||