[1] WANG, Y. J., ZHANG, Q. C., WANG, W., and YANG, T. Z. In-plane dynamics of a fluidconveying corrugated pipe supported at both ends. Applied Mathematics and Mechanics (English Edition), 40(8), 1119-1134(2019) https://doi.org/10.1007/s10483-019-2511-6 [2] JIANG, T. L., DAI, H. L., ZHOU, K., and WANG, L. Nonplanar post-buckling analysis of simply supported pipes conveying fluid with an axially sliding downstream end. Applied Mathematics and Mechanics (English Edition), 41(1), 15-32(2020) https://doi.org/10.1007/s10483-020-2557-9 [3] CHEN, W., DAI, H. L., and WANG, L. Enhanced stability of two-material panels in supersonic flow:optimization strategy and physical explanation. AIAA Journal, 57, 5553-5565(2019) [4] PAÏDOUSSIS, M. P. Fluid-Structure Interactions:Slender Structures and Axial Flow, Academic Press, London, 63-75(1998) [5] BENJAMIN T. B. Dynamics of a system of articulated pipes conveying fluid, I:theory. Proceedings of the Royal Society of London A, 261, 457-486(1961) [6] BENJAMIN, T. B. Dynamics of a system of articulated pipes conveying fluid, II:experiments. Proceedings of the Royal Society of London A, 261, 487-499(1961) [7] GREGORY, R. W. and PAÏDOUSSIS, M. P. Unstable oscillation of tubular cantilevers conveying fluid, I:theory. Proceedings of the Royal Society of London A, 293, 512-527(1966) [8] GREGORY, R. W. and PAÏDOUSSIS, M. P. Unstable oscillation of tubular cantilevers conveying fluid, II:experiments. Proceedings of the Royal Society of London A, 293, 528-542(1966) [9] PAÏDOUSSIS, M. P. Dynamics of tubular cantilevers conveying fluid. Journal of Engineering Mechanics, 12, 85-103(1970) [10] BOURRIERES, F. J. Sur un phénomène d'oscillation auto-entreten ` ue en mécanique des fluides réels. Publications Scientifiques et Techniques du Ministère de l'Air, Centre de Documentation de l'Armement, Paris (1965) [11] HOLMES, P. J. Pipes supported at both ends cannot flutter. Journal of Applied MechanicsTransactions of the ASME, 45, 619-622(1978) [12] HOLMES, P. J. Bifurcations to divergence and flutter in flow-induced oscillations:a finitedimensional analysis. Journal of Sound Vibration, 53, 471-503(1977) [13] WANG, L. H. and ZHONG, Z. Complex modal analysis for the time-variant dynamical problem of rotating pipe conveying fluid. Computer Modeling in Engineering and Sciences, 114, 1-18(2018) [14] YANG, T. Z., JI, S. D., YANG, X. D., and FANG, B. Microfluid-induced nonlinear free vibration of microtubes. International Journal of Engineering Science, 76, 47-55(2014) [15] TANG, Y. and YANG, T. Z. Post-buckling behavior and nonlinear vibration analysis of a fluidconveying pipe composed of functionally graded material. Composite Structures, 185, 393-400(2018) [16] SEMLER, C., LI, G. X., and PAÏDOUSSIS, M. P. The nonlinear equations of motion of pipes conveying fluid. Journal of Sound Vibration, 169, 577-599(1994) [17] SARKAR, A. and PAÏDOUSSIS, M. P. A compact limit-cycle oscillation model of a cantilever conveying fluid. Journal of Fluids and Structures, 17, 525-539(2003) [18] TANG, Y., YANG, T. Z., and FANG, B. Fractional dynamics of fluid-conveying pipes made of polymer-like materials. Acta Mechanica Solida Sinica, 31, 243-258(2018) [19] LI, Q., LIU, W., LU, K., and YUE, Z. F. Nonlinear parametric vibration of a fluid-conveying pipe flexibly restrained at the ends. Acta Mechanica Solida Sinica, 33, 327-346(2020) [20] PAÏDOUSSIS, M. P., SEMLER, C., WADHAM-GAGNON, M., and SAAID, S. Dynamics of cantilevered pipes conveying fluid, part 2:dynamics of the system with intermediate spring support. Journal of Fluids and Structures, 23, 569-587(2007) [21] PAIDOUSSIS, M. P. and SEMLER, C. Nonlinear dynamics of a fluid-conveying cantilevered pipe with an intermediate spring support. Journal of Fluids and Structures, 7, 269-298(1993) [22] GHAYESH, M. H., PAÏDOUSSIS, M. P., and MODARRES-SADEGHI, Y. Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass. Journal of Sound Vibration, 330, 2869-2899(2011) [23] PAÏDOUSSIS, M. P. and SEMLER, C. Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid:a full nonlinear analysis. Nonlinear Dynamics, 4, 655-670(1993) [24] WANG, Y. K., WANG, L., NI, Q., DAI, H. L., YAN, H., and LUO, Y. Y. Non-planar responses of cantilevered pipes conveying fluid with intermediate motion constraints. Nonlinear Dynamics, 93, 505-524(2018) [25] XU, Q. P. and LIU, J. Y. An improved dynamic model for a silicone material beam with large deformation. Acta Mechanica Sinica, 34, 744-753(2018) [26] CHEN, W., WANG, L., and DAI, H. L. Nonlinear free vibration of hyperelastic beams based on Neo-Hookean model. International Journal of Structural Stability and Dynamics, 20, 2050015(2020) [27] TEXIER, B. D. and DORBOLO, S. Deformations of an elastic pipe submitted to gravity and internal fluid flow. Journal of Fluids and Structures, 55, 364-371(2015) [28] RIVERO-RODRIGUEZ, J. and PEREZ-SABORID, M. Numerical investigation of the influencé of gravity on flutter of cantilevered pipes conveying fluid. Journal of Fluids and Structures, 55, 106-121(2015) [29] CHEN, W., DAI, H. L., JIA, Q. Q., and WANG, L. Geometrically exact equation of motion for large-amplitude oscillation of cantilevered pipe conveying fluid. Nonlinear Dynamics, 98, 2097-2114(2019) [30] GHAYESH, M. H., PAÏDOUSSIS, M. P., and AMABILI, M. Nonlinear dynamics of cantilevered extensible pipes conveying fluid. Journal of Sound Vibration, 332, 6405-6418(2013) [31] STOKER, J. J. Nonlinear Elasticity, Gordon and Breach, New York, 13-21(1968) [32] SNOWDON, J. C. Vibration and Shock in Damped Mechanical System, John Wiley, New York (1968) [33] PAÏDOUSSIS, M. P. and SEMLER, C. Non-linear dynamics of a fluid-conveying cantilevered pipe with a small mass attached at the free end. International Journal of Non-Linear Mechanics, 33, 15-32(1998) |