Applied Mathematics and Mechanics (English Edition) ›› 2022, Vol. 43 ›› Issue (7): 1109-1124.doi: https://doi.org/10.1007/s10483-022-2866-7
• Articles • Previous Articles Next Articles
Huliang DAI1,2,3,4, Yixiang HE1, Kun ZHOU1, Zerui PENG1,2, Lin WANG1,2, P. HAGEDORN3
Received:
2021-10-16
Revised:
2022-01-05
Online:
2022-07-01
Published:
2022-06-30
Contact:
Huliang DAI, E-mail: daihulianglx@hust.edu.cn
Supported by:
2010 MSC Number:
Huliang DAI, Yixiang HE, Kun ZHOU, Zerui PENG, Lin WANG, P. HAGEDORN. Utilization of nonlinear vibrations of soft pipe conveying fluid for driving underwater bio-inspired robot. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1109-1124.
[1] PAïDOUSSIS, M. P. and LI, G. X. Pipes conveying fluid:a model dynamical problem. Journal of Fluids and Structures, 7(2), 137-204(1993) [2] WANG, L. Flutter instability of supported pipes conveying fluid subjected to distributed follower force. Acta Mechanica Solida Sinica, 25, 46-52(2012) [3] ZHANG, Y. L. and CHEN, L. Q. External and internal resonances of the pipe conveying fluid in the supercritical regime. Journal of Sound and Vibration, 332, 2318-2337(2013) [4] ABDELBAKI, A. R., PAïDOUSSIS, M. P., and MISRA, A. K. A nonlinear model for a hanging tubular cantilever simultaneously subjected to internal and confined external axial flows. Journal of Sound and Vibration, 449, 349-367(2019) [5] PAïDOUSSIS, M. P. Fluid-Structure Interactions:Slender Structures and Axial Flow, Academic Press, London (1998) [6] PAïDOUSSIS, M. P. The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across applied mechanics. Journal of Sound and Vibration, 310, 462-492(2008) [7] HUA, Y. J. and ZHU, W. Vibration analysis of a fluid-conveying curved pipe with an arbitrary undeformed configuration. Applied Mathematical Modelling, 64, 624-642(2018) [8] DING, H., JI, J., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mechanical System Siginal Process, 121, 675-688(2019) [9] ZHOU, K., NI, Q., WANG, L., and DAI, H. L. Planar and non-planar vibrations of a fluidconveying cantilevered pipe subjected to axial base excitation. Nonlinear Dynamics, 99(4), 2527-2549(2020) [10] JIANG, T. L., DAI, H. L., ZHOU, K., and WANG, L. Nonplanar post-buckling analysis of simply supported pipes conveying fluid with an axially sliding downstream end. Applied Mathematics and Mechanics (English Edition), 41(1), 15-32(2020) https://doi.org/10.1007/s10483-020-2557-9 [11] YE, S. Q., DING, H., WEI, S., JI, J., and CHEN, L. Q. Non-trivial equilibriums and natural frequencies of a slightly curved pipe conveying supercritical fluid. Ocean Engineering, 227, 108899(2021) [12] CHEN, W., HU, Z. Y., DAI, H. L., and WANG, L. Extremely large-amplitude oscillation of soft pipes conveying fluid under gravity.Applied Mathematics and Mechanics (English Edition), 41(9), 1381-1400(2020) https://doi.org/10.1007/s10483-020-2646-6 [13] GREGORY, R. W. and PAïDOUSSIS, M. P. Unstable oscillations of tubular cantilevers conveying fluid, II:experiments. Proceedings of the Royal Society A, 293, 528-542(1966) [14] BOURRIERES, F. J.Sur un Phenomene D'oscillation Auto-entretenue en M ecanique des Fluids R eels, Blondel la Rougery, Gauthier-Villars (1939) [15] BENJAMIN, T. B. Dynamics of a system of articulated pipes conveying fluid, I:theory. Proceedings of the Royal Society A, 261, 457-486(1961) [16] BENJAMIN, T. B. Dynamics of a system of articulated pipes conveying fluid, II:experiments. Proceedings of the Royal Society A, 261, 487-499(1961) [17] PAïDOUSSIS, M. P. Oscillations of Liquid-filled Flexible Tubes, Ph. D. dissertation, University of Cambridge, Cambridge (1963) [18] GREGORY, R. W. and PAïDOUSSIS, M. P. Unstable oscillations of tubular cantilevers conveying fluid, I:theory. Proceedings of the Royal Society A, 293, 512-527(1966) [19] ZHOU, K., NI, Q., CHEN, W., DAI, H. L., HAGEDORN, P., and WANG, L. Static equilibrium configuration and nonlinear dynamics of slightly curved cantilevered pipe conveying fluid. Journal of Sound and Vibration, 490, 115711(2021) [20] FAROKHI, H. and ERTURK, A. Three-dimensional nonlinear extreme vibrations of cantilevers based on a geometrically exact model. Journal of Sound and Vibration, 510, 116295(2021) [21] PAïDOUSSIS, M. P., ABDELBAKI, A. R., BUTT, M. F., TAVALLAEINEJAD, M., MODITIS, K., MISRA, A. K., NAHON, M., and RATIGAN, J. L. Dynamics of a cantilevered pipe subjected to internal and reverse external axial flow:a review. Journal of Fluids and Structures, 106, 103349(2021) [22] ABDELBAKI, A. R., PAïDOUSSIS, M. P., and MISRA, A. K. A nonlinear model for a hanging tubular cantilever simultaneously subjected to internal and confined external axial flows. Journal of Sound and Vibration, 449, 349-367(2019) [23] ZHOU, K., NI, Q., DAI, H. L., and WANG, L. Nonlinear forced vibrations of supported pipe conveying fluid subjected to an axial base excitation. Journal of Sound Vibration, 47, 115189(2020) [24] ZHOU, K., NI, Q., CHEN, W., DAI, H. L., PENG, Z. R., and WANG, L. New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections. Applied Mathematics and Mechanics (English Edition), 42(5), 703-720(2021) https://doi.org/10.1007/s10483-021-2729-6 [25] TANI, J. and SUDANI, Y. Active flutter suppression of a tube conveying fluid. The First European Conference on Smart Structures and Materials, Glasgow, 333-336(1992) [26] YAU, C. H., BAJAJ, A. K., and NWOKAH, O. D. I. Active control of chaotic vibration in a constrained flexible pipe conveying fluid. Journal of Fluids and Structures, 9, 99-122(1995) [27] SUGIYAMA, Y., KATAYAMA, T., KANKI, E., NISHINO, K., and AKESSON, B. Stabilization of cantilevered flexible structures by means of an internal flowing fluid. Journal of Fluids and Structures, 10, 653-661(1996) [28] LIN, Y. H., HUANG, R. C., and CHU, C. L. Optimal modal vibration suppression of a fluidconveying pipe with a divergent mode. Journal of Sound and Vibration, 271, 577-597(2004) [29] TSAI, Y. K. and LIN, Y. H. Adaptive modal vibration control of a fluid-conveying cantilever pipe. Journal of Fluids and Structures, 11, 535-547(1997) [30] YU, D. L., WEN, J. H., ZHAO, H. G., LIU, Y. Z., and WEN, X. S. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. Journal of Sound and Vibration, 318, 193-205(2008) [31] YU, D. L., PAïDOUSSIS, M. P., SHEN, H. J., and WANG, L. Dynamic stability of periodic pipes conveying fluid. Journal of Applied Mechanics, 81, 011008(2013) [32] DAI, H. L., WANG, L., and NI, Q. Dynamics of a fluid-conveying pipe composed of two different materials. International Journal of Engineering Science, 73, 67-76(2013) [33] RINALDI, S. and PAïDOUSSIS, M. P. Dynamics of a cantilevered pipe discharging fluid, fitted with a stabilizing end-piece. Journal of Fluids and Structures, 26, 517-525(2010) [34] WANG, L. and DAI, H. L. Vibration and enhanced stability properties of fluid-conveying pipes with two symmetric elbows fitted at downstream end. Archive of Applied Mechanics, 82, 155-162(2012) [35] YANG, T. Z., YANG, X. D., LI, Y. H., and FANG, B. Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. Journal of Vibration and Control, 20(9), 1293-1300(2014) [36] ZHOU, K., XIONG, F. R., JIANG, N. B., DAI, H. L., YAN, H., WANG, L., and NI, Q. Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dynamics, 95(2), 1435-1456(2019) [17] PAïDOUSSIS, M. P. Oscillations of Liquid-filled Flexible Tubes, Ph. D. dissertation, University of Cambridge, Cambridge (1963) [18] GREGORY, R. W. and PAïDOUSSIS, M. P. Unstable oscillations of tubular cantilevers conveying fluid, I:theory. Proceedings of the Royal Society A, 293, 512-527(1966) [19] ZHOU, K., NI, Q., CHEN, W., DAI, H. L., HAGEDORN, P., and WANG, L. Static equilibrium configuration and nonlinear dynamics of slightly curved cantilevered pipe conveying fluid. Journal of Sound and Vibration, 490, 115711(2021) [20] FAROKHI, H. and ERTURK, A. Three-dimensional nonlinear extreme vibrations of cantilevers based on a geometrically exact model. Journal of Sound and Vibration, 510, 116295(2021) [21] PAïDOUSSIS, M. P., ABDELBAKI, A. R., BUTT, M. F., TAVALLAEINEJAD, M., MODITIS, K., MISRA, A. K., NAHON, M., and RATIGAN, J. L. Dynamics of a cantilevered pipe subjected to internal and reverse external axial flow:a review. Journal of Fluids and Structures, 106, 103349(2021) [22] ABDELBAKI, A. R., PAïDOUSSIS, M. P., and MISRA, A. K. A nonlinear model for a hanging tubular cantilever simultaneously subjected to internal and confined external axial flows. Journal of Sound and Vibration, 449, 349-367(2019) [23] ZHOU, K., NI, Q., DAI, H. L., and WANG, L. Nonlinear forced vibrations of supported pipe conveying fluid subjected to an axial base excitation. Journal of Sound Vibration, 47, 115189(2020) [24] ZHOU, K., NI, Q., CHEN, W., DAI, H. L., PENG, Z. R., and WANG, L. New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections. Applied Mathematics and Mechanics (English Edition), 42(5), 703-720(2021) https://doi.org/10.1007/s10483-021-2729-6 [25] TANI, J. and SUDANI, Y. Active flutter suppression of a tube conveying fluid. The First European Conference on Smart Structures and Materials, Glasgow, 333-336(1992) [26] YAU, C. H., BAJAJ, A. K., and NWOKAH, O. D. I. Active control of chaotic vibration in a constrained flexible pipe conveying fluid. Journal of Fluids and Structures, 9, 99-122(1995) [27] SUGIYAMA, Y., KATAYAMA, T., KANKI, E., NISHINO, K., and AKESSON, B. Stabilization of cantilevered flexible structures by means of an internal flowing fluid. Journal of Fluids and Structures, 10, 653-661(1996) [28] LIN, Y. H., HUANG, R. C., and CHU, C. L. Optimal modal vibration suppression of a fluidconveying pipe with a divergent mode. Journal of Sound and Vibration, 271, 577-597(2004) [29] TSAI, Y. K. and LIN, Y. H. Adaptive modal vibration control of a fluid-conveying cantilever pipe. Journal of Fluids and Structures, 11, 535-547(1997) [30] YU, D. L., WEN, J. H., ZHAO, H. G., LIU, Y. Z., and WEN, X. S. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. Journal of Sound and Vibration, 318, 193-205(2008) [31] YU, D. L., PAïDOUSSIS, M. P., SHEN, H. J., and WANG, L. Dynamic stability of periodic pipes conveying fluid. Journal of Applied Mechanics, 81, 011008(2013) [32] DAI, H. L., WANG, L., and NI, Q. Dynamics of a fluid-conveying pipe composed of two different materials. International Journal of Engineering Science, 73, 67-76(2013) [33] RINALDI, S. and PAïDOUSSIS, M. P. Dynamics of a cantilevered pipe discharging fluid, fitted with a stabilizing end-piece. Journal of Fluids and Structures, 26, 517-525(2010) [34] WANG, L. and DAI, H. L. Vibration and enhanced stability properties of fluid-conveying pipes with two symmetric elbows fitted at downstream end. Archive of Applied Mechanics, 82, 155-162(2012) [35] YANG, T. Z., YANG, X. D., LI, Y. H., and FANG, B. Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. Journal of Vibration and Control, 20(9), 1293-1300(2014) [36] ZHOU, K., XIONG, F. R., JIANG, N. B., DAI, H. L., YAN, H., WANG, L., and NI, Q. Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dynamics, 95(2), 1435-1456(2019)1124 Huliang DAI, Yixiang HE, Kun ZHOU, Zerui PENG, Lin WANG, and P. HAGEDORN [37] SODANO, H., PARK, G., and INMAN, D. J. A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest, 36, 197-205(2004) [38] DAI, H., ABDELKEFI, A., and WANG, L. Piezoelectric energy harvesting from concurrent vortexinduced vibrations and base excitations. Nonlinear Dynamics, 77, 967-981(2014) [39] PAïDOUSSIS, M. P. Hydroelastic icthyoid propulsion. Journal of Hydronautics, 10, 30-32(1976) [40] HELLUM, A., MUKHERJEE, R., and HULL, A. J. Flutter instability of a fluid-conveying fluidimmersed pipe affixed to a rigid body. Journal of Fluids and Structures, 27, 1086-1096(2011) [41] STREFLING, P. C., HELLUM, A. M., and MUKHERJEE, R. Modeling, simulation, and performance of a synergistically propelled ichthyoid. IEEE-ASME Transactions on Mechatronics, 17, 36-45(2011) [42] HUA, R. N., ZHU, L. D., and LU, X. Y. Locomotion of a flapping flexible plate. Physics of Fluids, 25, 2979-2987(2013) [43] PENG, Z. R., HUANG, H., and LU, X. Y. Collective locomotion of two closely spaced self-propelled flapping plates. Journal of Fluid Mechanics, 849, 1068-1095(2018) [44] PENG, Z. R., HUANG, H., and LU, X. Y. Hydrodynamic schooling of multiple self-propelled flapping plates. Journal of Fluid Mechanics, 853, 587-600(2018) [45] PENG, Z. R., HUANG, H., and LU, X. Y. Collective locomotion of two self-propelled flapping plates with different propulsive capacities. Physics of Fluids, 30, 111901(2018) [46] LI, D. F., DENG, H. B., PAN, Z. H., and XIU, Y. Collaborative obstacle avoidance algorithm of multiple bionic snake robots in fluid based on IB-LBM. ISA Transactions, 122, 271-280(2022) [47] VADALA-ROTH, B., ACHARYA, S., PATANKAR, N. A., ROSSI, S., and GRIFFITH, B. E. Stabilization, approaches for the hyperelastic immersed boundary method for problems of large deformation incompressible elasticity. Computer Methods in Applied Mechanics and Engineering, 365, 112978(2020) [48] TAYLOR, G. Analysis of the swimming of long and narrow animals. Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences, 214, 158-183(1952) [49] IRSCHIK, H. and HOLL, H. The equations of Lagrange written for a non-material volume. Acta Mechanica, 153(3-4), 231-248(2002) |
[1] | Runqing CAO, Zilong GUO, Wei CHEN, Huliang DAI, Lin WANG. Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 261-276. |
[2] | Lüsen WANG, Zhu SU, Lifeng WANG. Flutter analysis of rotating beams with elastic restraints [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 761-776. |
[3] | Kun ZHOU, Qiao NI, Wei CHEN, Huliang DAI, Zerui PENG, Lin WANG. New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 703-720. |
[4] | Wei CHEN, Ziyang HU, Huliang DAI, Lin WANG. Extremely large-amplitude oscillation of soft pipes conveying fluid under gravity [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(9): 1381-1400. |
[5] | Yingjie WANG, Qichang ZHANG, Wei WANG, Tianzhi YANG. In-plane dynamics of a fluid-conveying corrugated pipe supported at both ends [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1119-1134. |
[6] | Huagang LIN, Dengqing CAO, Yuqian XU. Vibration characteristics and flutter analysis of a composite laminated plate with a store [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(2): 241-260. |
[7] | Xingzhe WANG, Longfei LI, Youhe ZHOU. Aeroelastic dynamics stability of rotating sandwich annular plate with viscoelastic core layer [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(1): 107-120. |
[8] | GUO Hu-Lun;CHEN Yu-Shu;YANG Tian-Zhi. Limit cycle oscillation suppression of 2-DOF airfoil using nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(10): 1277-1290. |
[9] | Xu XU. Parametric studies on relationships between flutter derivatives of slender bridge (II) [J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(3): 335-341. |
[10] | Xu XU. Parametric studies on relationships between flutter derivatives of slender bridge (I) [J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(2): 237-245 . |
[11] | XU Xu;CAO Zhi-yuan . LINEAR AND NONLINEAR AERODYNAMIC THEORY OF INTERACTION BETWEEN FLEXIBLE LONG STRUCTURE AND WIND [J]. Applied Mathematics and Mechanics (English Edition), 2001, 22(12): 1446-1457. |
[12] | ZHAO Feng-qun;WANG Zhong-min;FENG Zhen-yu;LIU Hong-zhao. STABILITY ANALYSIS OF MAXWELL VISCOELASTIC PIPES CONVEYING FLUID WITH BOTH ENDS SIMPLY SUPPORTED [J]. Applied Mathematics and Mechanics (English Edition), 2001, 22(12): 1436-1445. |
[13] | WANG Zhong-min;FENG Zhen-yu;ZHAO Feng-qun;LIU Hong-zhao. ANALYSIS OF COUPLED-MODE FLUTTER OF PIPES CONVEYING FLUID ON THE ELASTIC FOUNDATION [J]. Applied Mathematics and Mechanics (English Edition), 2000, 21(10): 1177-1186. |
[14] | Wang Li-ren . AN ENGINEERING FORMULA ON THE CALCULATION OF OBLIQUE PENETRATION BY LONG-ROD PROJECTILE [J]. Applied Mathematics and Mechanics (English Edition), 1992, 13(10): 939-945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||