Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (1): 197-216.doi: https://doi.org/10.1007/s10483-024-3069-6
• Articles • Previous Articles
C. G. PAVITHRA1, B. J. GIREESHA1,*(), M. L. KEERTHI2
Received:
2023-08-20
Online:
2024-01-01
Published:
2023-12-26
Contact:
B. J. GIREESHA
E-mail:bjgireesu@rediffmail.com
Supported by:
2010 MSC Number:
C. G. PAVITHRA, B. J. GIREESHA, M. L. KEERTHI. Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fln exposed to magnetic fleld in the presence of a shape-dependent trihybrid nanofluid. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 197-216.
1 | KRAUS, A. D., AZIZ, A., WELTY, J., and SEKULIC, D. P. Extended surface heat transfer. Applied Mechanics Reviews, 54 (5), B92 (2001) |
2 | GORLA, R. S. R., and BAKIER, A. Y. Thermal analysis of natural convection and radiation in porous fins. International Communications in Heat and Mass Transfer, 38 (5), 638- 645 (2011) |
3 | AZIZ, A., and TORABI, M. Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature. Heat Transfer Asian Research, 41 (2), 99- 113 (2012) |
4 | KUNDU, B., DAS, R., WANKHADE, P. A., and LEE, K. S. Heat transfer improvement of a wet fin under transient response with a unique design arrangement aspect. International Journal of Heat and Mass Transfer, 127, 1239- 1251 (2018) |
5 | WANG, F. Z., VARUN-KUMAR, R. S., SOWMYA, G., EL-ZAHAR, E. R., PRASANNAKUMARA, B. C., IJAZ-KHAN, M., KHAN, S. U., MALIK, M. Y., and XIA, W. F. LSM and DTM-Páde approximation for the combined impacts of convective and radiative heat transfer on an inclined porous longitudinal fin. Case Studies in Thermal Engineering, 35, 101846 (2022) |
6 | KIWAN,S., and AL-NIMR, M. A. Using porous fins for heat transfer enhancement. Journal of Heat Transfer, 123 (4), 790- 795 (2001) |
7 | KIWAN, S. Effect of radiative losses on the heat transfer from porous fins. International Journal of Thermal Sciences, 46 (10), 1046- 1055 (2007) |
8 | DAS, R., SINGH, K., AKAY, B., and GOGOI, T. K. Application of artificial bee colony algorithm for maximizing heat transfer in a perforated fin. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 232 (1), 38- 48 (2018) |
9 | NABATI, M., JALALVAND, M., and TAHERIFAR, S. Sinc collocation approach through thermal analysis of porous fin with magnetic field. Journal of Thermal Analysis and Calorimetry, 144 (6), 2145- 2158 (2021) |
10 | PRASANNAKUMARA, B. C. Assessment of the local thermal non-equilibrium condition for nanofluid flow through porous media: a comparative analysis. Indian Journal of Physics, 96 (8), 2475- 2483 (2022) |
11 | HOSHYAR, H. A., GANJI, D. D., and MAJIDIAN, A. R. Least square method for porous fin in the presence of uniform magnetic field. Journal of Applied Fluid Mechanics, 9 (2), 661- 668 (2016) |
12 | OGUNTALA, G., SOBAMOWO, G., ABD-ALHAMEED, R., and JONES, S. Efficient iterative method for investigation of convective-radiative porous fin with internal heat generation under a uniform magnetic field. International Journal of Applied and Computational Mathematics, 5 (1), 1- 19 (2019) |
13 | DAS, R., and KUNDU, B. Simultaneous estimation of heat generation and magnetic field in a radial porous fin from surface temperature information. International Communications in Heat and Mass Transfer, 127, 105497 (2021) |
14 | GIREESHA, B. J., SOWMYA, G., and SRIKANTHA, N. Heat transfer in a radial porous fin in the presence of magnetic field: a numerical study. International Journal of Ambient Energy, 43 (1), 3402- 3409 (2022) |
15 | AZIZ, A., and KHANI, F. Convection-radiation from a continuously moving fin of variable thermal conductivity. Journal of the Franklin Institute, 348 (4), 640- 651 (2011) |
16 | BHANJA, D., KUNDU, B., and AZIZ, A. Enhancement of heat transfer from a continuously moving porous fin exposed in convective-radiative environment. Energy Conversion and Management, 88, 842- 853 (2014) |
17 | TURKYILMAZOGLU, M. Heat transfer from moving exponential fins exposed to heat generation. International Journal of Heat and Mass Transfer, 116, 346- 351 (2018) |
18 | PAVITHRA, C. G., GIREESHA, B. J., and KEERTHI, M. L. Heat transfer analysis of a convective radiative porous moving longitudinal fin exposed to magnetic field by adomian decomposition Sumudu transform method. Physica Scripta, 98 (4), 045208 (2023) |
19 | JAGADEESHA, K. C., KUMAR, R. V., ELATTAR, S., KUMAR, R., PRASANNAKUMARA, B. C., KHAN, M. I., and MALIK, M. Y. A physical depiction of a semi-spherical fin unsteady heat transfer and thermal analysis of a fully wetted convective-radiative semi-spherical fin. Journal of the Indian Chemical Society, 99 (9), 100457 (2022) |
20 | MILLER, K. S., and ROSS, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993) |
21 | ADOMIAN, G. Solving Frontier Problems of Physics, Springer Science & Business Media, New York (2013) |
22 | WATUGALA, G. Sumudu transform: a new integral transform to solve differential equations and control engineering problems. Integrated Education, 24 (1), 35- 43 (1993) |
23 | PATEL, T., and MEHER, R. A study on temperature distribution, efficiency and effectiveness of longitudinal porous fins by using adomian decomposition Sumudu transform method. Procedia Engineering, 127, 751- 758 (2015) |
24 | PATEL, T., and MEHER, R. Adomian decomposition Sumudu transform method for solving a solid and porous fin with temperature dependent internal heat generation. Springer Plus, 5 (1), 1- 18 (2016) |
25 | KEERTHI, M. L., GIREESHA, B. J., and SOWMYA, G. Numerical investigation of efficiency of fully wet porous convective-radiative moving radial fin in the presence of shape-dependent hybrid nanofluid. International Communications in Heat and Mass Transfer, 138, 106341 (2022) |
26 | GOUD, J. S., SRILATHA, P., KUMAR, R. V., KUMAR, K. T., KHAN, U., RAIZAH, Z., and GALAL, A. M. Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113 (2022) |
27 | ABDULRAHMAN, A., GAMAOUN, F., KUMAR, R. V., KHAN, U., GILL, H. S., NAGARAJA, K. V., and GALAL, A. M. Study of thermal variation in a longitudinal exponential porous fin wetted with TiO2-SiO2/hexanol hybrid nanofluid using hybrid residual power series method. Case Studies in Thermal Engineering, 43, 102777 (2023) |
28 | ARIF, M., DI PERSIO, L., KUMAM, P., WATTHAYU, W., and AKGÜL, A. Heat transfer analysis of fractional model of couple stress Casson tri-hybrid nanofluid using dissimilar shape nanoparticles in blood with biomedical applications. Scientific Reports, 13 (1), 4596 (2023) |
[1] | M. NEMATI, M. SEFID, A. KARIMIPOUR, A. J. CHAMKHA. Lattice Boltzmann method formulation for simulation of thermal radiation effects on non-Newtonian Al2O3 free convection in entropy determination [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 1085-1106. |
[2] | P. S. REDDY, P. SREEDEVI. Enhanced entropy generation and heat transfer characteristics of magnetic nano-encapsulated phase change materials in latent heat thermal energy storage systems [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 1051-1070. |
[3] | M. IBTESAM, S. NADEEM, J. ALZABUT. Numerical computations of magnetohydrodynamic mixed convective flow of Casson nanofluid in an open-ended cavity formed by earthquake-induced faults [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2215-2230. |
[4] | M. HAMID, M. USMAN, Zhenfu TIAN. Computational analysis for fractional characterization of coupled convection-diffusion equations arising in MHD flows [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 669-692. |
[5] | B. J. GIREESHA, M. L. KEERTHI. Effect of periodic heat transfer on the transient thermal behavior of a convective-radiative fully wet porous moving trapezoidal fin [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 653-668. |
[6] | A. V. ROŞCA, N. C. ROŞCA, I. POP. Three-dimensional mixed convection stagnation-point flow past a vertical surface with second-order slip velocity [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 641-652. |
[7] | Shuguang LI, M. I. KHAN, F. ALI, S. S. ABDULLAEV, S. SAADAOUI, HABIBULLAH. Mathematical modeling of mixed convective MHD Falkner-Skan squeezed Sutterby multiphase flow with non-Fourier heat flux theory and porosity [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 2005-2018. |
[8] | Qingkai ZHAO, Longbin TAO, Hang XU. Analysis of periodic pulsating nanofluid flow and heat transfer through a parallel-plate channel in the presence of magnetic field [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1957-1972. |
[9] | Yaping YAN, Shuang WU, Kaiyuan TIAN, Zhenfu TIAN. Numerical simulation for 2D double-diffusive convection (DDC) in rectangular enclosures based on a high resolution upwind compact streamfunction model I: numerical method and code validation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(9): 1431-1448. |
[10] | Wenhai ZHOU, Youhe ZHOU. Electric-magnetic-force characteristics of rare earth barium copper oxide superconductor high-field coils based on screening effect and strain sensitivity [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(8): 1249-1268. |
[11] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 547-556. |
[12] | S. HUSSAIN, T. TAYEBI, T. ARMAGHANI, A. M. RASHAD, H. A. NABWEY. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 447-466. |
[13] | B. J. GIREESHA, M. L. KEERTHI, G. SOWMYA. Effects of stretching/shrinking on the thermal performance of a fully wetted convective-radiative longitudinal fin of exponential profile [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 389-402. |
[14] | Jing PENG, Shiyong CUI, Yuanyuan TIAN, Qihong FANG, Jia LI, P. K. LIAW. Effects of grain boundary on irradiation-induced zero-dimensional defects in an irradiated copper [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(2): 233-246. |
[15] | Shunzu ZHANG, Qianqian HU, Wenjuan ZHAO. Surface effect on band structure of magneto-elastic phononic crystal nanoplates subject to magnetic and stress loadings [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(2): 203-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||