[1] KRAUS, A. D., AZIZ, A., and WELTY, J. R. Extended Surface Heat Transfer, John Wiley, New York (2002) [2] KIWAN, S. Thermal analysis of natural convection porous fins. Transport in Porous Media, 67(1), 17–29(2007) [3] GORLA, R. S. R. and BAKIER, A. Y. Thermal analysis of natural convection and radiation in porous fins. International Communications in Heat and Mass Transfer, 38(5), 638–645(2011) [4] TORABI, M. and AZIZ, A. Thermal performance and efficiency of convective-radiative T-shaped fins with temperature dependent thermal conductivity, heat transfer coefficient and surface emissivity. International Communications in Heat and Mass Transfer, 39(8), 1018–1029(2012) [5] VAHABZADEH, A., GANJI, D. D., and ABBASI, M. Analytical investigation of porous pin fins with variable section in fully-wet conditions. Case Studies in Thermal Engineering, 5, 1–12(2015) [6] DARVISHI, M. T., KHANI, F., and AZIZ, A. Numerical investigation for a hyperbolic annular fin with temperature dependent thermal conductivity. Propulsion and Power Research, 5(1), 55–62(2016) [7] OGUNTALA, G., ABD-ALHAMEED, R., and SOBAMOWO, G. On the effect of magnetic field on thermal performance of convective-radiative fin with temperature-dependent thermal conductivity. Karbala International Journal of Modern Science, 4(1), 1–11(2018) [8] HOSEINZADEH, S., MOAFI, A., SHIRKHANI, A., and CHAMKHA, A. J. Numerical validation heat transfer of rectangular cross-section porous fins. Journal of Thermophysics and Heat Transfer, 33(3), 698–704(2019) [9] SOWMYA, G., GIREESHA, B. J., KHAN, M. I., MOMANI, S., and HAYAT, T. Thermal investigation of fully wet longitudinal porous fin of functionally graded material. International Journal of Numerical Methods for Heat & Fluid Flow, 30(12), 5087–5101(2020) [10] KUNDU, B. and YOOK, S. J. An accurate approach for thermal analysis of porous longitudinal, spine and radial fins with all nonlinearity effects-analytical and unified assessment. Applied Mathematics and Computation, 402, 126124(2021) [11] TURKYILMAZOGLU, M. Thermal management of parabolic pin fin subjected to a uniform oncoming airflow: optimum fin dimensions. Journal of Thermal Analysis and Calorimetry, 143, 3731–3739(2021) [12] TURKYILMAZOGLU, M. Expanding/contracting fin of rectangular profile. International Journal of Numerical Methods for Heat and Fluid Flow, 31, 1057–1068(2021) [13] TORABI, M., AZIZ, A., and ZHANG, K. A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities. Energy, 51, 243–256(2013) [14] TORABI, M. and QIAO, B. Z. Analytical solution for evaluating the thermal performance and efficiency of convective-radiative straight fins with various profiles and considering all non-linearities. Energy Conversion and Management, 66, 199–210(2013) [15] HATAMI, M. and GANJI, D. D. Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4). Ceramics International, 40(5), 6765–6775(2014) [16] KUNDU, B. and LEE, K. S. Exact analysis for minimum shape of porous fins under convection and radiation heat exchange with surrounding. International Journal of Heat and Mass Transfer, 81, 439–448(2015) [17] KUNDU, B., DAS, R., and LEE, K. S. Differential transform method for thermal analysis of exponential fins under sensible and latent heat transfer. Procedia Engineering, 127, 287–294(2015) [18] TURKYILMAZOGLU, M. Heat transfer from moving exponential fins exposed to heat generation. International Journal of Heat and Mass Transfer, 116, 346–351(2018) [19] SHARQAWY, M. H. and ZUBAIR, S. M. Efficiency and optimization of straight fins with combined heat and mass transfer — an analytical solution. Applied Thermal Engineering, 28(17-18), 2279–2288(2008) [20] HATAMI, M., AHANGAR, G. R. M., GANJI, D. D., and BOUBAKER, K. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Conversion and Management, 84, 533–540(2014) [21] KHANI, F., DARVISHI, M. T., GORLA, R. S. R., and GIREESHA, B. J. Thermal analysis of a fully wet porous radial fin with natural convection and radiation using the spectral collocation method. International Journal of Applied Mechanics and Engineering, 21(2), 377–392(2016) [22] SOWMYA, G., GIREESHA, B. J., and BERREHAL, H. An unsteady thermal investigation of a wetted longitudinal porous fin of different profiles. Journal of Thermal Analysis and Calorimetry, 143(3), 2463–2474(2021) [23] MA, J., SUN, Y. S., and LI, B. W. Simulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method. International Journal of Thermal Sciences, 118, 475–487(2017) [24] GIREESHA, B. J., SOWMYA, G., and MACHA, M. Temperature distribution analysis in a fully wet moving radial porous fin by finite element method. International Journal of Numerical Methods for Heat & Fluid Flow (2019) https://doi.org/10.1108/HFF-12-2018-0744 [25] MOSAYEBIDORCHEH, S., FARZINPOOR, M., and GANJI, D. D. Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent properties and different fin profiles. Energy Conversion and Management, 86, 365–370(2014) [26] ALKASASSBEH, M., OMAR, Z., MEBAREK-OUDINA, F., RAZA, J., and CHAMKHA, A. Heat transfer study of convective fin with temperature-dependent internal heat generation by hybrid block method. Heat Transfer-Asian Research, 48(4), 1225–1244(2019) [27] TURKYILMAZOGLU, M. Stretching/shrinking longitudinal fins of rectangular profile and heat transfer. Energy Conversion and Management, 91, 199–203(2015) [28] MOSAVAT, M., MORADI, R., TAKAMI, M. R., GERDROODBARY, M. B., and GANJI, D. D. Heat transfer study of mechanical face seal and fin by analytical method. Engineering Science and Technology, an International Journal, 21(3), 380–388(2018) [29] ROY, P. K., MALLICK, A., MONDAL, H., and SIBANDA, P. A modified decomposition solution of triangular moving fin with multiple variable thermal properties. Arabian Journal for Science and Engineering, 43(3), 1485–1497(2018) [30] AZIZ, A. and TORABI, M. Convective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coefficient, and surface emissivity with temperature. Heat Transfer-Asian Research, 41(2), 99–113(2012) [31] AZIZ, M. and BOUAZIZ, M. N. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Conversion and Management, 52(8-9), 2876–2882(2011) [32] TORABI, M., YAGHOOBI, H., and AZIZ, A. Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity. International Journal of Thermophysics, 33(5), 924–941(2012) |