[1] HIEMENZ, K. Die Grenzschicht an einem in den gleichförmigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech. J., 326, 321-410 (1911) [2] HOMANN, F. Der Einfluss grosser Zähigkeit bei Strömung um Zylinder. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 16, 153-164 (1936) [3] HOWARTH, L. The boundary layer equations in three-dimensional flow, part II, the flow near a stagnation point. Philosophical Magazine, 42, 1433-1440 (1951) [4] DAVEY, A. Boundary-layer flow at a saddle point of attachment. Journal of Fluid Mechanics, 10, 593-610 (1961) [5] WANG, C. Y. Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics, 43, 377-382 (2008) [6] ABBASSI, A. S. and RAHIMI, A. B. Nonaxisymmetric three-dimensional stagnation-point flow and heat transfer on a flat plate. Journal of Fluids Engineering, 131, 074501 (2009) [7] WEIDMAN, P. D. Non-axisymmetric Homann stagnation-point flows. Journal of Fluid Mechanics, 702, 460-469 (2012) [8] WEIDMAN, P. D. Axisymmetric stagnation-point flow on a spiraling disk. Physics of Fluids, 26, 073603 (2014) [9] WEIDMAN, P. D. and MA, Y. P. The competing effects of wall transpiration and stretching on Homann stagnation-point flow.European Journal of Mechanics-B/Fluids, 60, 237-241 (2016) [10] KUDENATTI, R. B. and KIRSUR, S. R. Numerical and asymptotic study of non-axisymmetric magnetohydrodynamic boundary layer stagnation-point flows. Mathematical Methods in the Applied Sciences, 40, 5841-5850 (2017) [11] MAHAPATRA, T. R. and SIDUI, S. Unsteady heat transfer in non-axisymmetric Homann stagnation-point flows towards a stretching/shrinking sheet. European Journal of Mechanics B/Fluids, 75, 199208 (2019) [12] CAHN, J. W. and HILLIARD, J. E. Free energy of a nonuniform system I, interfacial free energy. The Journal of Chemical Physics, 28, 258-267 (1958) [13] CHOI, S. U. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Developments and Applications of Non-Newtonian Flows, 66, 99-105 (1995) [14] BUONGIORNO, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240-250 (2006) [15] TIWARI, R. K. and DAS, M. K. Heat transfer augmentation in a two-sided lid-driven dif-ferentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50, 2002-2018 (2007) [16] CHENG, L. Nanofluid heat transfer technologies. Recent Patents on Engineering, 3, 1-7 (2009) [17] LEBON, G., MACHRAFI, H., GRMELA, M., and DUBOIS, C. An extended thermodynamic model of transient heat conduction at sub-continuum scales. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467, 3241-3256 (2011) [18] ZHAO, Y. P. and WANG, F. C. Surface tension effects of nanostructures. Encyclopedia of Nanotechnology, Springer, Dordrecht, 2599-2610 (2016) [19] WONG, K. V. and LEON, O. D. Applications of nanofluids: current and future. Advances in Mechanical Engineering, 2010, 519659 (2015) [20] MALEKI, H., SAFAEI, M. R., ALRASHED, A. A., and KASAEIAN, A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. Journal of Thermal Analysis and Calorimetry, 135, 1655-1666 (2019) [21] SAJID, M. U. and ALI, H. M. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renewable and Sustainable Energy Reviews, 103, 556-592 (2019) [22] BESTHAPU, P., HAQ, R. U., BANDARI, S., and AL-MDALLAL, Q. M. Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface. Neural Computing and Applications, 31, 207-217 (2019) [23] SESHADRI, R., SREESHYLAN, N., and NATH, G. Unsteady three-dimensional stagnation point flow of a viscoelastic fluid. International Journal of Engineering Science, 35, 445-454 (1997) [24] SHARMA, R. C. and KUMAR, P. On the stability of two superposed Walter's B viscoelastic liquids. Czechoslovak Journal of Physics, 47, 197-204 (1997) [25] BARIŠ, S. Steady three-dimensional flow of a Walter's B fluid in a vertical channel. Turkish Journal of Engineering and Environmental Sciences, 26, 385-394 (2002) [26] LABROPULU, F., HUSAIN, I., and CHINICHIAN, M. Stagnation-point flow of the Walters' B fluid with slip. International Journal of Mathematics and Mathematical Sciences, 61, 3249-3258 (2004) [27] MADANI TONEKABONI, S. A., ABKAR, R., and KHOEILAR, R. On the study of viscoelastic Walter's B fluid in boundary layer flows. Mathematical Problems in Engineering, 2012, 861508 (2012) [28] HAYAT, T., MUHAMMAD, T., ALSAEDI, A., and ALHUTHALI, M. S. Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. Journal of Magnetism and Magnetic Materials, 385, 222-229 (2015) [29] AHMAD, M., SAJID, M., HAYAT, T., and AHMAD, I. On numerical and approximate solutions for stagnation point flow involving third order fluid. AIP Advances, 5, 067138 (2015) [30] SAJID, M., ARSHAD, A., JAVED, T., and ABBAS, Z. Stagnation point flow of Walter's B fluid using hybrid homotopy analysis method. Arabian Journal for Science and Engineering, 40, 3313-3319 (2015) [31] HUSSAIN, A. and ULLAH, A. Boundary layer flow of a Walter's B fluid due to a stretching cylinder with temperature dependent viscosity. Alexandria Engineering Journal, 55, 3073-3080 (2016) [32] FAROOQ, M., KHAN, M. I., WAQAS, M., HAYAT, T., ALSAEDI, A., and KHAN, M. I. MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. Journal of Molecular Liquids, 221, 1097-1103 (2016) [33] HUSSAIN, A., SARWAR, L., AKBAR, S., MALIK, M. Y., and GHAFOOR, S. Model for MHD viscoelastic nanofluid flow with prominence effects of radiation. Heat Transfer-Asian Research, 48, 463-482 (2019) [34] MAHAPATRA, T. R. and SIDUI, S. Non-axisymmetric Homann stagnation-point flow of a viscoelastic fluid towards a fixed plate. European Journal of Mechanics-B/Fluids, 79, 38-43 (2020) [35] SOOMRO, F. A., USMAN, M., HAQ, R. U., and WANG, W. Melting heat transfer analysis of Sisko fluid over a moving surface with non-linear thermal radiation via Collocation method. International Journal of Heat and Mass Transfer, 126, 1034-1042 (2018) [36] BEARD, D. W. and WALTERS, K. Elastico-viscous boundary-layer flows I, two-dimensional flow near a stagnation point. Mathematical Proceedings of the Cambridge Philosophical Society, 60, 667-674 (1964) [37] LIGHTHILL, M. J. On displacement thickness. Journal of Fluid Mechanics, 4, 383-392 (1958) |