Applied Mathematics and Mechanics (English Edition) ›› 2023, Vol. 44 ›› Issue (8): 1367-1384.doi: https://doi.org/10.1007/s10483-023-3014-6
• Articles • Previous Articles Next Articles
Libiao XIN1, Yang WANG1, Zhiqiang LI2, Y. B. LI3
Received:
2023-01-12
Revised:
2023-05-11
Published:
2023-07-27
Contact:
Libiao XIN, E-mail: xinlibiao@tyut.edu.cn
Supported by:
2010 MSC Number:
Libiao XIN, Yang WANG, Zhiqiang LI, Y. B. LI. Finite deformation analysis of the rotating cylindrical hollow disk composed of functionally-graded incompressible hyper-elastic material. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1367-1384.
[1] MARK, J. E., ERMAN, B., and ROLAND, M. The Science and Technology of Rubber, Academic Press, New York (2013) [2] BERTOLDI, K., VITELLI, V., CHRISTENSEN, J., and VAN HECKE, M. Flexible mechanical metamaterials. Nature Reviews Materials, 2, 1-11(2017) [3] WU, L., WANG, Y., CHUANG, K., WU, F., WANG, Q., LIN, W., and JIANG, H. A brief review of dynamic mechanical metamaterials for mechanical energy manipulation. Materials Today, 44, 168-193(2021) [4] QI, J., CHEN, Z., JIANG, P., HU, W., WANG, Y., ZHAO, Z., CAO, X., ZHANG, S., TAO, R., and LI, Y. Recent progress in active mechanical metamaterials and construction principles. Advanced Science, 9, 2102662(2022) [5] SHEPHERD, R. F., ILIEVSKI, F., CHOI, W., MORIN, S. A., STOKES, A. A., MAZZEO, A. D., CHEN, X., WANG, M., and WHITESIDES, G. M. Multigait soft robot. Proceedings of the National Academy of Sciences, 108, 20400-20403(2011) [6] EL-ATAB, N., MISHRA, R. B., AL-MODAF, F., JOHARJI, L., ALSHARIF, A. A., ALAMOUDI, H., DIAZ, M., QAISER, N., and HUSSAIN, M. M. Soft actuators for soft robotic applications:a review. Advanced Intelligent Systems, 2, 2000128(2020) [7] JI, X., LIU, X., CACUCCIOLO, V., IMBODEN, M., CIVET, Y., EL-HAITAMI, A., CANTIN, S., PERRIARD, Y., and SHEA, H. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Science Robotics, 4, eaaz6451(2019) [8] RUS, D. and TOLLEY, M. T. Design, fabrication and control of soft robots. nature, 521, 467-475(2015) [9] ROGERS, J. A., SOMEYA, T., and HUANG, Y. Materials and mechanics for stretchable electronics. Science, 327, 1603-1607(2010) [10] KIM, D. H., LU, N., MA, R., KIM, Y. S., KIM, R. H., WANG, S., WU, J., WON, S. M., TAO, H., and ISLAM, A. Epidermal electronics. Science, 333, 838-843(2011) [11] WANG, C., WANG, C., HUANG, Z., and XU, S. Materials and structures toward soft electronics. Advanced Materials, 30, 1801368(2018) [12] BEEBE, D. J., MOORE, J. S., BAUER, J. M., YU, Q., LIU, R. H., DEVADOSS, C., and JO, B. H. Functional hydrogel structures for autonomous flow control inside microfluidic channels. nature, 404, 588-590(2000) [13] YANG, C. and SUO, Z. Hydrogel ionotronics. Nature Reviews Materials, 3, 125-142(2018) [14] LIU, X., LIU, J., LIN, S., and ZHAO, X. Hydrogel machines. Materials Today, 36, 102-124(2020) [15] ZHAO, X., CHEN, X., YUK, H., LIN, S., LIU, X., and PARADA, G. Soft materials by design:unconventional polymer networks give extreme properties. Chemical Reviews, 121, 4309-4372(2021) [16] TRELOAR, L. G. The Physics of Rubber Elasticity, Oxford University Press, Oxford (1975) [17] HUDGINS, R. G. Development of a constitutive relation for elastomers exhibiting selfreinforcement. Polymer Engineering & Science, 46, 919-929(2006) [18] JAMES, H. M. and GUTH, E. Theory of the elastic properties of rubber. The Journal of Chemical Physics, 11, 455-481(1943) [19] FLORY, P. J. and REHNER, J., JR. Statistical mechanics of cross-linked polymer networks, I:rubberlike elasticity. The Journal of Chemical Physics, 11, 512-520(1943) [20] ARRUDA, E. M. and BOYCE, M. C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2), 389-412(1993) [21] DAL, H., GUELTEKIN, O., and ACIKGOZ, K. An extended eight-chain model for hyperelastic and finite viscoelastic response of rubberlike materials:theory, experiments and numerical aspects. Journal of the Mechanics and Physics of Solids, 145, 104159(2020) [22] TRELOAR, L. The photoelastic properties of short-chain molecular networks. Transactions of the Faraday Society, 50, 881-896(1954) [23] TRELOAR, L. R. G. and RIDING, G. A non-Gaussian theory for rubber in biaxial strain, I:mechanical properties. Proceedings of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 369, 261-280(1979) [24] WU, P. D. and IESSEN, E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. Journal of the Mechanics and Physics of Solids, 41, 427-456(1993) [25] RIVLIN, R. S. Large elastic deformations of isotropic materials, IV:further developments of the general theory. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 241(835), 379-397(1948) [26] OGDEN, R. W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society A:Mathematical, Physical & Engineering Sciences, 326(1567), 565-584(1972) [27] BECHIR, H., CHEVALIER, L., CHAOUCHE, M., and BOUFALA, K. Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant. European Journal of Mechanics A/Solids, 25, 110-124(2006) [28] CARROLL, M. M. A strain energy function for vulcanized rubbers. Journal of Elasticity, 103, 173-187(2011) [29] DAVIDSON, J. D. and GOULBOURNE, N. C. A nonaffine network model for elastomers undergoing finite deformations. Journal of the Mechanics and Physics of Solids, 61, 1784-1797(2013) [30] MANGAN, R., DESTRADE, M., and SACCOMANDI, G. Strain energy function for isotropic non-linear elastic incompressible solids with linear finite strain response in shear and torsion. Extreme Mechanics Letters, 9, 204-206(2016) [31] KHIÊM, V. N. and ITSKOV, M. Analytical network-averaging of the tube model:rubber elasticity. Journal of the Mechanics and Physics of Solids, 95, 254-269(2016) [32] XIANG, Y., ZHONG, D., WANG, P., MAO, G., YU, H., and QU, S. A general constitutive model of soft elastomers. Journal of the Mechanics and Physics of Solids, 117, 110-122(2018) [33] MENG, S., IMTIAZ, H., and LIU, B. A simple interpolation-based approach towards the development of an accurate phenomenological constitutive relation for isotropic hyperelastic materials. Extreme Mechanics Letters, 49, 101485(2021) [34] SHEN, S., ZHONG, D., QU, S., and XIAO, R. A hyperelastic-damage model based on the strain invariants. Extreme Mechanics Letters, 52, 101641(2022) [35] DAL, H., ACIKGOZ, K., and BADIENIA, Y. On the performance of isotropic hyperelastic constitutive models for rubber-like materials:a state of the art review. Applied Mechanics Reviews, 73, 020802(2021) [36] OGDEN, R. W., SACCOMANDI, G., and SGURA, I. Fitting hyperelastic models to experimental data. Computational Mechanics, 34, 484-502(2004) [37] ZHAN, L., WANG, S., QU, S., STEINMANN, P., and XIAO, R. A new micro-macro transition for hyperelastic materials. Journal of the Mechanics and Physics of Solids, 171, 105156(2023) [38] BOGGARAPU, V., GUJJALA, R., OJHA, S., ACHARYA, S., CHOWDARY, S., and GARA, D. K. State of the art in functionally graded materials. Composite Structures, 262, 113596(2021) [39] LOH, G. H., PEI, E., HARRISON, D., and MONZÓN, M. D. An overview of functionally graded additive manufacturing. Additive Manufacturing, 23, 34-44(2018) [40] NAEBE, M. and SHIRVANIMOGHADDAM, K. Functionally graded materials:a review of fabrication and properties. Applied Materials Today, 5, 223-245(2016) [41] NIKBAKHT, S., KAMARIAN, S., and SHAKERI, M. A review on optimization of composite structures, part II:functionally graded materials. Composite Structures, 214, 83-102(2019) [42] SALEH, B., JIANG, J., FATHI, R., AL-HABABI, T., XU, Q., WANG, L., SONG, D., and MA, A. 30 years of functionally graded materials:an overview of manufacturing methods, applications and future challenges. Composites Part B:Engineering, 201, 108376(2020) [43] SURESH, S. and MORTENSEN, A. Fundamentals of Functionally Graded Materials, IOM Communications, London (1998) [44] IKEDA, Y., KASAI, Y., MURAKAMI, S., and KOHJIYA, S. Preparation and mechanical properties of graded styrene-butadiene rubber vulcanizates. Journal of the Japan Institute of Metals, 62, 1013-1017(1998) [45] IKEDA, Y. Preparation and properties of graded styrene-butadiene rubber vulcanizates. Journal of Polymer Science Part B:Polymer Physics, 40, 358-364(2002) [46] BILGILI, E. Controlling the stress-strain inhomogeneities in axially sheared and radially heated hollow rubber tubes via functional grading. Mechanics Research Communications, 30, 257-266(2003) [47] BILGILI, E. Functional grading of rubber tubes within the context of a molecularly inspired finite thermoelastic model. Acta Mechanica, 169, 79-85(2004) [48] BATRA, R. and BAHRAMI, A. Inflation and eversion of functionally graded non-linear elastic incompressible circular cylinders. International Journal of Non-Linear Mechanics, 44, 311-323(2009) [49] NIE, G. and BATRA, R. Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness. Composite Structures, 92, 720-729(2010) [50] ANANI, Y. and RAHIMI, G. H. Stress analysis of thick pressure vessel composed of functionally graded incompressible hyperelastic materials. International Journal of Mechanical Sciences, 104, 1-7(2015) [51] ANANI, Y. and RAHIMI, G. H. Stress analysis of rotating cylindrical shell composed of functionally graded incompressible hyperelastic materials. International Journal of Mechanical Sciences, 108, 122-128(2016) [52] SHARIYAT, M., KHOSRAVI, M., ARIATAPEH, M. Y., and NAJAFIPOUR, M. Nonlinear stress and deformation analysis of pressurized thick-walled hyperelastic cylinders with experimental verifications and material identifications. International Journal of Pressure Vessels and Piping, 188, 104211(2020) [53] CHEN, W., YAN, Z., and WANG, L. On mechanics of functionally graded hard-magnetic soft beams. International Journal of Engineering Science, 157, 103391(2020) [54] BARTLETT, N. W., TOLLEY, M. T., OVERVELDE, J. T., WEAVER, J. C., MOSADEGH, B., BERTOLDI, K., WHITESIDES, G. M., and WOOD, R. J. A 3D-printed, functionally graded soft robot powered by combustion. Science, 349, 161-165(2015) [55] WANG, Z., WANG, Z., ZHENG, Y., HE, Q., and CAI, S. Three-dimensional printing of functionally graded liquid crystal elastomer. Science Advances, 6, eabc0034(2020) [56] LI, Y., FENG, Z., HAO, L., HUANG, L., XIN, C., WANG, Y., BILOTTI, E., ESSA, K., ZHANG, H., and LI, Z. A review on functionally graded materials and structures via additive manufacturing:from multi-scale design to versatile functional properties. Advanced Materials Technologies, 5, 1900981(2020) [57] SARKAR, P. R. and RAHMAN, A. S. Effect of magnetic field on the thermo-elastic response of a rotating FGM circular disk with non-uniform thickness. The Journal of Strain Analysis for Engineering Design, 57, 116-131(2022) [58] OGDEN, R. W. Non-Linear Elastic Deformations, Dover Publications Inc., New York (1984) [59] TIMOSHENKO, S. and GOODIER, J. N. Theory of Elasticity, Mcgraw-Hill Book Company, New York (1951) [60] KINCAID, D. R. and CHENEY, E. W. Numerical Analysis:Mathematics of Scientific Computing, Cole Publishing Co., California (2002) |
[1] | Qili TANG, Yunqing HUANG. Parallel finite element computation of incompressible magnetohydrodynamics based on three iterations [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 141-154. |
[2] | Jie XU, Xuegang YUAN, Hongwu ZHANG, Zhentao ZHAO, Wei ZHAO. Combined effects of axial load and temperature on finite deformation of incompressible thermo-hyperelastic cylinder [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(4): 499-514. |
[3] | P. SINGH, A. CHATTOPADHYAY, A. K. SINGH. Rayleigh-type wave propagation in incompressible visco-elastic media under initial stress [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(3): 317-334. |
[4] | Qian SHI, Yu CHEN, Xilin XIE. Interplay of surface geometry and vorticity dynamics in incompressible flows on curved surfaces [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(9): 1191-1212. |
[5] | Xiaodi WU, Fu CHEN, Huaping LIU. Combined immersed boundary method and multiple-relaxation-time lattice Boltzmann flux solver for numerical simulations of incompressible flows [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(12): 1679-1696. |
[6] | Chao XU, Dongyang SHI, Xin LIAO. Low order nonconforming mixed finite element method for nonstationary incompressible Navier-Stokes equations [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(8): 1095-1112. |
[7] | Ping LIU. A class of exact solutions for N-dimensional incompressible magnetohydrodynamic equations [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(2): 209-214. |
[8] | Benwen LI, Shangshang CHEN. Direct spectral domain decomposition method for 2D incompressible Navier-Stokes equations [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8): 1073-1090. |
[9] | A. ALI; S. ASGHAR; H. H. ALSULAMI. Oscillatory flow of second grade fluid in cylindrical tube [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(9): 1097-1106. |
[10] | REN Jiu-Sheng;CHENG Chang-Jun. Non-uniqueness and stability of two-family fiber-reinforced incompressible hyper-elastic sheet under equibiaxial loading [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(12): 1513-1520. |
[11] | SHAN Zhen-Dong;LING Dao-Cheng;DING Hao-Jiang. Exact solutions to one-dimensional transient response of incompressible fluid-saturated single-layer porous media [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(1): 75-84. |
[12] | Jia LI;Ji-sheng LUO. Applications of parabolized stability equation for predicting transition position in boundary layers [J]. Applied Mathematics and Mechanics (English Edition), 2012, 33(6): 679-686. |
[13] | TANG Bo;LI Jun-feng;WANG Tian-shu . Viscous flow with free surface motion by least square finite element method [J]. Applied Mathematics and Mechanics (English Edition), 2008, 29(7): 943-952 . |
[14] | Bhupendra Kumar Sharma;Mamta Agarwal;R. C. Chaudhary. Radiation effect on temperature distribution in three-dimensional Couette flow with suction or injection [J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(3): 309-309 . |
[15] | YUAN Xue-gang;ZHU Zheng-you;CHENG Chang-jun. QUALITATIVE ANALYSIS OF DYNAMICAL BEHAVIOR FOR AN IMPERFECT INCOMPRESSIBLE NEO-HOOKEAN SPHERICAL SHELL [J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(8): 973-981 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||